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Abstract. In real world engineering applications, the uncertainties are inherent and the scatter of structural 
parameters from their nominal ideal values is unavoidable. In deterministic based structural sizing optimization 
problems the aim is to minimize the weight or the cost of the structure, taking into account certain behavioral 
constraints on stresses and displacements, as imposed in a deterministic manner by the design codes. On the 
other hand, stochastic performance measures that involve various reliability requirements are being taken into 
consideration in many contemporary engineering applications. Reliability is defined as the probability of the 
system to meet the design demands during its life time. In structural optimization, stochastic performance 
measures can be taken into account using two distinguished formulations, Robust Design Optimization (RDO) 
and Reliability-Based Design Optimization (RBDO). 

In the case of a RDO problem, the uncertainties play a dominant role. Compared to the basic Deterministic 
Based Optimization (DBO) formulation, a RDO formulation yields a design with a state of robustness, so that its 
performance is the least sensitive to the variability of the uncertain parameters. In this work, the optimum 
design achieved based on a deterministic formulation is compared with the ones obtained employing a robust 
design formulation, with reference to the structural weight, the variance of the response and the probability of 
violation of the constraints. 

1 INTRODUCTION 

Although a great deal of studies has been proposed during the last three decades for structural optimization, 
those devoted to RDO are rather limited. In the present work, the non-dominant Cascade Evolutionary 
Algorithm (CEA)-based multi-objective optimization scheme is proposed for the solution of structural RDO 
problems, together with an improved handling of the multi-objective optimization problem, and is compared to 
the Linear Weighting Sum (LWS) method. The stochastic finite element problem is solved using the Monte 
Carlo simulation method combined with the Latin Hypercube Sampling (LHS) technique in order to reduce the 
number of simulations needed for the calculation of the required statistical quantities. Up to one hundred LHS 
simulations proved to be sufficient, for the test cases considered for calculating the statistical quantities. 
Furthermore, the advantages of the proposed cascade multi-objective optimization methodology over the 
classical LWS method and the importance of considering the variance of the structural response as a criterion 
are demonstrated. A real-scale truss structure has been examined subject to constraints imposed by the Eurocode 
3 [7]. 

2 STOCHASTIC FINITE ELEMENT ANALYSIS 

During the last two decades much progress has been achieved on stochastic finite element methods [18, 19]. 
However, comparatively few studies have been performed in structural optimization taking into account 
uncertain parameters. For the solution of stochastic finite element analysis problems, a number of methods have 
been proposed that can be classified into statistical and non-statistical ones. In this work, a statistical method and 
in particular Monte Carlo Simulation combined with the Latin Hypercube Sampling is employed. 

 
2.1 Monte Carlo Simulation (MCS) Method 

The MCS method is particularly applicable for the stochastic analysis of structures when an analytical 
solution is not attainable. This is mainly the case in problems of complex nature with a large number of 
uncertain variables, where all other stochastic analysis methods are inapplicable. Despite the fact that the 
mathematical formulation of the MCS is simple, the method has the capability of handling practically every 
possible case regardless of its complexity and the variation of the uncertain variables. The MCS method has 
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proven to be efficient [16] for the calculation of the statistical quantities in the framework of a RBDO problem. 
For the structural stochastic analysis problems examined in this study, the probability of violation of the 

behavioral constraints and the probability of failure are calculated along with the mean value and the variance of 
a characteristic nodal displacement that represents the response of the structure. 

 
2.2 Latin Hypercube Sampling 

The Latin Hypercube Sampling (LHS) method was introduced by MacKay et al. [13] in an effort to reduce 
the required computational cost of purely random sampling methodologies. Latin hypercube sampling is a 
strategy for generating random sample points ensuring that all portions of the random space in question are 
properly represented. LHS is generally recognized as one of the most efficient size reduction techniques. The 
basis of  LHS is a full stratification of the sampled distribution with a random selection inside each stratum. In 
consequence, sample values are randomly shuffled among different variables. A Latin hypercube sample is 
constructed by dividing the range of each of the nr uncertain variables into N non-overlapping segments of equal 
marginal probability. Thus, the whole parameter space, consisting of N parameters, is partitioned into rnN cells. 
A single value is selected randomly from each interval, producing N sample values for each input variable. The 
values are randomly matched to create N sets from the rnN  space with respect to the density of each interval for 
the N simulation runs. The advantage of the LHS approach is that the random samples are generated from all the 
ranges of possible values. 

3. MULTI-OBJECTIVE OPTIMIZATION 

In many practical applications a single criterion rarely gives a representative measure of the actual structural 
performance, as several conflicting and usually incommensurable criteria have to be taken into account 
simultaneously. The optimization problem with more than one objective is called as multi-criteria, multi-
objective or vector optimization problem [4]. 

 
3.1 Formulation of the multi-objective optimization problem 

In general, the mathematical formulation of a multi-objective problem that includes a set of n design 
variables, a set of m objective functions and a set of k constraint functions can be defined as follows 
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where the vector s = [s1 s2 ... sn]T represents a design variable vector and F is the feasible region, a subspace of 
the design space Rn for which the constraint functions g(s) are satisfied 

 
3.2 Domination and non-domination 

In single objective optimization problems the feasible set F can be ordered univocally according to the value 
of the objective function. For example, in the case of the minimization problem of f(s), two solutions sa and sb ∈ 
F can be classified using the condition f(sa) < f(sb). In a multi-objective optimization problem two solutions sa 
and sb ∈ F cannot be classified in a univocal manner. The concept of the Pareto dominance is used for assessing 
the two solutions, which for a minimization problem can be defined as follows 
 

a b i a i b

a b i a i b

a b

dominates  if ( ) ( ) i=1, ,m
weakly dominates  if ( ) ( ) i=1, ,m
is indifferent to  otherwise

< ∀
≤ ∀

s s s s
s s s s
s s

…
…

f f
f f     (2) 

 
Using the definition of Eq. (2), the Pareto optimality can be stated as follows: A solution s* ∈ F is Pareto 

optimal if it is not dominated by any other feasible design. 
 
3.3 Solving the multi-objective optimization problem 

Several methods have been proposed for treating structural multi-objective optimization problems [3, 9, 11]. 
According to Marler and Arora [12] these methods can be divided into: (i) methods with a priori articulation of 
preferences, (ii) methods with a posteriori articulation of preferences and (iii) methods with no articulation of 
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preferences. The proposed Cascade Evolutionary Algorithm-based (CEA) multi-objective optimization scheme 
belongs to the first category. This algorithm is compared to the Linear Weighting Sum method (LWS), also 
belonging to the a priori articulation of preferences. The LWS method, due to its simplicity, is the most widely 
implemented method for solving such problems. In both methods employed, the problem in finding the Pareto 
front curve is reduced into a sequence of parameterized single-objective optimization subproblems, using 
scalarizing functions. 

In general, by using scalarizing functions, locally Pareto optimal solutions are obtained. Global Pareto 
optimality can be guaranteed only when the objective functions and the feasible region are both convex or quasi-
convex and convex, respectively. For non-convex cases, such as the majority of structural multi-objective 
optimization problems, a global single objective optimizer must be implemented. Evolutionary Algorithms (EA) 
are considered as global optimizers since they are not prone to being trapped in local optima and therefore can 
be considered as the most reliable methods in approaching the global optimum for non-convex constrained 
optimization problems. For this reason an evolutionary algorithm has been considered in this study for the 
solution of the sequence of the parameterized single objective optimization problems. 

3.4 Non-dominant multi-objective search using the Tchebycheff metric 
The proposed Cascade Evolutionary Algorithm (CEA)-based optimization scheme combines the CEA 

methodology with a non-dominance search and the Tchebycheff metric. 

3.4.1 Augmented weighted Tchebycheff problem 
The augmented weighted Tchebycheff method belongs to the methods with a priori articulation of the 

preferences for treating the multi-objective optimization problem and unlike the LWS method, can be applied 
effectively to convex as well as non-convex problems [15]. The weighted Tchebycheff metric can generate any 
optimal solution, to any type of optimization problem [20]. In order to overcome weakly Pareto optimal 
solutions, the Tchebycheff method formulates the distance minimization problem as a weighted Tchebycheff 
problem 
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where ρ is a sufficiently small positive scalar (in this work ρ = 0.1). The weight parameters wi are random 
numbers, uniformly distributed between 0 and 1. The weight parameters have to make a sum of 1, if not, they 
are updated according to the following expression: 
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3.4.2 CEA-based multi-objective optimization scheme 
It is generally accepted that there is still no unique optimization algorithm capable of handling all 

optimization problems efficiently. Cascade optimization attempts to alleviate this deficiency by applying a multi-
stage procedure in which various optimizers are implemented successively. In the present work the idea of 
cascading is implemented in the EA-context (CEA) for solving multi-objective structural optimization problems. 
In particular, the CEA method is employed for the solution of the sequence of parameterized single objective 
optimization problems. The resulting cascade evolutionary procedure consists of a number of optimization 
stages (csteps), each of which employs the same EA optimizer. In order to diversify the search paths followed by 
the same optimization algorithm during the cascade stages, the initial conditions of the individual optimization 
runs are suitably controlled by using a different initial design at each stage (each stage initiates from the end 
point of the previous stage) and a different seed for the random number generator of the EA procedure [1]. 

A non-dominant search is performed in the context of the CEA and the Tchebycheff metric in the sense that 
all non-dominated solutions attained so far are kept in a set called temporary Pareto set. The multi-objective 
optimization problems are decomposed into subproblems which are solved with independent runs (nruns in 
total) of the CEA methodology. Each subproblem is independent from the others and therefore all subproblems 
can be dealt with simultaneously. Furthermore, in every global generation a non-dominant search is applied for 
updating the temporary Pareto set. The global generation is achieved when all local generations of the 
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independent CEA runs are completed. According to this procedure in every global generation a local Pareto 
front is produced which approaches the global one. 

The optimization algorithm proposed in this study is denoted as: Non-dominant CEATm(µ+λ)nruns,csteps where 
µ, λ are the number of the parent and offspring vectors used in the ES optimization strategy, nruns is the number 
of independent CEA runs and csteps is the number of cascade stages employed. The proposed optimization 
scheme can be easily applied in two parallel computing levels, an external and an internal one. The multi-
objective optimization problem is converted into a series of single objective optimization problems. The solution 
of each subproblem can be performed concurrently constituting the external parallel computing level. On the 
other hand, the utilization of the natural parallelization capabilities of the CEA methodology within each 
independent run defines the internal parallel computing level. 

4. ROBUST DESIGN OPTIMIZATION 

In the present study the robust design versus the deterministic-based design optimization of large-scale 3D 
truss structures is investigated. The random variables chosen are the cross-sectional dimensions of structural 
members, the modulus of elasticity E, the yield stress σy, as well as the applied loading. 
 
4.1 Deterministic-based optimization 

In a Deterministic-Based Optimization (DBO) problem the aim is to minimize the weight of the structure 
under certain deterministic behavioral constraints. In this study three types of constraints are imposed to the 
sizing optimization problem considered: (i) Stress, (ii) Compression force (for buckling) and (iii) Displacement 
constraints. The stress constraint can be written as follows 

y
max a a

σ
σ σ , σ =

1.10
≤       (5) 

where σy is the yield stress, σmax is the maximum axial stress in each element group for all loading cases and σa is 
the allowable axial stress, all taken according to the Eurocode 3 [7] for design of steel structures. For members 
under compression an additional constraint is used 
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where Pc,max is the maximum axial compression force for all loading cases, Pe is the critical Euler buckling force 
in compression, taken as the first buckling mode of a pin-connected member, and Leff  is the effective length. The 
effective length is taken equal to the actual length. Similarly, the displacement constraints can be written as 
 

ad d≤
      (7) 

where da is the limit value of the displacement at a certain node or at the maximum nodal displacement. 
 
4.2 Formulation of the robust design optimization problem 

In a robust design sizing optimization problem an additional objective function is considered which is related 
to the influence of the random nature of some structural parameters on the response of the structure. In the 
present study the aim is to minimize both the weight and the variance of the response of the structure due to the 
uncertainty of the random parameters. This problem is treated as a two-objective optimization problem using the 
weighted Tchebycheff metric. The mathematical formulation of the RDO problem implemented in this study is 
as follows 
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where Φ(s) is the multi-objective function, which is expressed as 
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where f(s) is the weight of the structure and σ ( )s
iu  is the standard deviation of the response of the structure. 
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5. NUMERICAL TESTS 

The numerical tests examined are performed in three stages. In the first stage the statistical methods used for 
the stochastic analysis are verified. The number of LHS simulations required for the calculation of the mean 
value and the standard deviation of the characteristic displacement that represents the structural response is 
compared with the corresponding number required by the basic MCS. In the second stage the advantages of the 
proposed non-dominant CEATm method over the LWS method are demonstrated through the comparison of the 
Pareto front curves obtained. In the third stage, the differences between DBO and RDO optimum designs, in 
terms of the final structural weight, the variance of response, the probability of violation of the constraints and 
the probability of failure, are illustrated. 

The test example considered is a transmission tower, depicted in Figure 1. The design variables are the 
dimensions of the structural members, divided into seven groups, taken from the Equal Angle Section (EAS) 
table of the Eurocode. For each design variable, two stochastic variables are assigned: The length L and the 
width t of the legs of the section. The following loading vectors [Fx, Fy, Fz] in kN are applied to the structure: 
node A [-8.51, 0.00, -4.82], node B [-9.77, 0.00, -5.36], node C [-9.77, 0.00, -5.36], node D [-10.70, 0.00, -5.36] 
and node E [-10.70, 0.00, -5.36], while the type of probability density function, the mean value, and the variance 
of the random parameters are given in Table 1. A constraint maximum deflection of 200 mm is imposed. 

 

  
(a) (b) (c) 

Figure 1. Transmission tower: (a) 3D view, (b) Side view, (c) Top view 
 

 
  PDF Mean µ St. Dev. σ σ/µ 95% of values within 

E (kN/m2) Young's Modulus Normal 2.10E+08 1.50E+07 7.14% (1.81E+08, 2.39E+08) 
σy (kN/m2) Allowable stress Normal 355000 35500 10.00% (2.85E+05, 4.25E+05) 

F (kN) Nodal loading Normal µF 0.05 µF 5% (0.902 µF, 1.098 µF) 
L Legs length Normal Li * 0.02 Li 2% (0.961 Li, 1.039 Li) 
t Legs width Normal ti * 0.02 ti 2% (0.961 ti, 1.039 ti) 

* Taken from the Equal Angle Section (EAS) table of the Eurocode for every design 

Table 1. Characteristics of the random variables 

5.1 Efficiency of the stochastic analysis method 
In the first stage of the numerical study, the performance of the LHS procedure in calculating the statistical 

parameters required during the RDO procedure compared to the basic MCS is examined, by measuring the 
influence of the number of simulations on the computed value of the variance of the characteristic displacement. 
The results, for randomly selected designs, shown in Figure 2 demonstrate the efficiency of the implemented 
LHS procedure. It can be observed from Figure 2 that 100 LHS compared to 500 MCS simulations are required 
in order to calculate the standard deviation of the structural response. It has to be stated that the number of 
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simulations required may vary depending on the type of the structure, the loading conditions and the statistical 
characteristics of the structural parameters. 
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Figure 2. Efficiency of the LHS compared to the MCS in calculating the st. deviation of the structural response 

 
5.2 Comparison between LWS and CEATm 

In the second stage of this study the advantages of the cascade evolutionary multi-objective optimization 
scheme using the Tchebycheff metric are demonstrated over the linear weighing sum method. The quality of the 
Pareto front curve can be assessed by the number of Pareto optimum solutions obtained and their distribution 
along the front curve. Well distributed solutions along the curve provide an indication of the efficiency of the 
multi-objective optimization method employed. The main drawback of the multi-objective optimization methods 
using scalarizing functions, such as the LWS, is the difficulty to fulfil these two requirements. 

For the comparative study performed in this study the robust design optimization problem considered has 
been solved with the LWS method and the proposed non-dominant CEATm multi-objective optimization 
scheme. The LWS method has been implemented through two different runs with 10 and 30 points using the 
ES(µ+λ) optimization algorithm where µ = λ = 5 are the number of parents and offsprings, respectively. For the 
non-dominant CEATm(µ+λ)nrun,csteps optimization scheme the corresponding parameters are µ = λ = 5, nrun = 10 
and csteps = 3. The resultant Pareto front curves are depicted in Figure 3 (a) and (b) for the LWS and the 
CEATm, respectively. The horizontal axis corresponds to the structural weight while the vertical axis 
corresponds to the standard deviation of the characteristic node displacement. 
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Figure 3. The Pareto front curve obtained with (a) LWS - 30 points, (b) the non-dominant CEATm 

 
The RDO multi-objective optimization problem is non-convex and the weakness of the LWS is obvious from 

the front curves of figure 3(a). Well distributed pairs of weighting coefficients do not correspond to equally well 
distributed Pareto optimum solutions along the front curve. On the other hand, the proposed CEATm 
optimization scheme manages to generate the Pareto front curve having a good distribution of the Pareto 
solutions along the front curve, seen in Figure 3(b). 
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5.3 Comparison between DBO and RDO solutions 

In the third stage of this study the difference between DBO and RDO optimum designs is demonstrated in 
terms of the structural weight, the variance of the response and the probability of violation of the constraints. 
The resultant Pareto front curve, when the proposed optimization scheme is used, is shown in Figure 3(b). The 
two ends of the Pareto front curve represent two extreme designs. Point A corresponds to the deterministic-
based optimum where the weight of the structure is the dominant criterion. Point C is the optimum when the 
standard deviation of the response is considered as the dominant criterion. The intermediate Pareto optimal 
solutions are compromise solutions between these two extreme optimum designs under conflicting criteria. 

In Table 2 comparisons are performed for the three optimum designs A, B and C of Figure 3(b). The 
RDO(B) optimum design is achieved considering a compromise between the weight and the standard deviation. 
An important outcome of this investigation is that the DBO optimum design violates the constraints with 
probability equal to 1.1% and probability of failure equal to 0.6%. On the other hand, the probability of violation 
and the probability of failure, in the case of the compromise optimum design B, are computed one to two orders 
of magnitude lower compared to those corresponding to DBO designs. As a consequence of this reduced 
probability of violation and failure, an increase of 70% and 30% on the optimum weights achieved is observed 
in the case of RDO compared to the DBO. The value of the probability of violation is significantly lower in the 
case of optimum design C where the corresponding probability is 0.002%. However, the optimum weights 
achieved are 4 and 2 times more than the one obtained with the DBO formulations. 

 
 DBO (A) RDO (B) RDO (C) 

Weight (kN) 21.1 35.5 85.7 
Standard Deviation (m) 1.32 10-02 4.17 10-03 2.28 10-03 

Pviol (%) 1.1 100 7.0 10-2 2.0 10-3 
Pf (%) 0.6 100 1.0 10-2 0.8 10-3 

Table 2. Characteristic optimal solutions 

The hardware platform that was used in this work for the parallel computing implementation consists of a PC 
cluster with 25 nodes Pentium III in 500 MHz interconnected through Fast Ethernet, with every node in a 
separate 100Mbit/sec switch port. Message passing is performed with the programming platforms PVM working 
over FastEthernet. Two parallel processing schemes have been considered: Parallel 1 corresponding to the 
exploitation of the parallel implementation of the optimization scheme and Parallel 2 corresponding to the 
parallel implementation of the stochastic analysis involved in the optimization procedure. The computational 
performance for obtaining the multi-objective RDO Pareto front curve is compared in Table 3. The solution of 
the single-objective DBO(A) and RDO(C) problems, in sequential and parallel computing environments is 
examined. It can be seen that the computational time required for obtaining the RDO(C) optimum solutions is 
two orders of magnitude more than the corresponding time required to obtain the DBO(A) optimum solutions in 
sequential computing environment. This difference is reduced to one order of magnitude in parallel computing 
environment. 
 

Time (s) Formulation Optim. Scheme Generations FE analyses Sequential Parallel 1* Parallel 2* 
DBO (A) CEA(5+5) 103 627 63 19 - 
DBO (C) CEATm(5+5)1,3 109 576 5214 349 229 

RDO Par. F. C. CEATm(5+5)10,3 947 5528 51092 3127 2259 
* In 25 processors 

Table 3. Computational perfrormance 

6. CONCLUSIONS 

With the proposed multi-objective optimization scheme a uniform distribution of the Pareto optimum 
solutions along the front curve is achieved that is an indication of the efficiency of the optimization procedure. 
For the robust design optimization problem considered the proposed non-dominant CEATm multi-objective 
optimization methodology manages to generate the Pareto front curve with a good distribution of the Pareto 
solutions along the front curve. 

The results obtained with the deterministic and the robust design optimization formulation underline the 
importance of minimizing the variance of the structural response when uncertain parameters are taken into 
account. For the test examples considered in this study, the probability of constraint violation of the DBO 
designs is computed two orders of magnitude greater than the corresponding probabilities for the RDO designs 
when the standard deviation of the response is considered as the dominant criterion to be minimized. On the 
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other hand, the computational cost required for obtaining the DBO designs is two orders of magnitude in 
sequential and one order of magnitude in parallel computing environment less than the corresponding computing 
cost required for obtaining the RDO optimum solutions. 

In the computational framework of robust design optimization of real-scale structures, the efficiency of the 
Latin hypercube sampling is also shown, requiring about a hundred of samples, in calculating the necessary 
statistical parameters. This part of the optimization procedure is very crucial since the computational cost of the 
RDO procedure is dependent directly on the number of simulations, while the reliability of the results obtained 
from the RDO procedure is influenced by the accuracy on the calculation of the statistical parameters. 
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