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1. Abstract 
The Particle Swarm Optimization (PSO) method is based on the behavior reflected in flocks of birds, bees and fish 
that adjust their physical movements to avoid predators and seek for food. It is an instance of a successful 
application of the philosophy of bounded rationality and decentralized decision-making for solving optimization 
problems. The method has been given considerable attention in recent years among the optimization research 
community. Compared to other optimization methods it is considered efficient in terms of number of function 
evaluations as well as robust since it usually leads to better or the same quality of results. However, the numerical 
tests performed with the PSO algorithm have shown rapid convergence during the initial stages of a global search, 
but at the neighborhood of the global optimum, the search process becomes rather slow, a typical behavior of all 
evolutionary type optimization algorithms. On the contrary, the gradient descending method can achieve faster 
convergence speed around global optimum and, at the same time, the convergence accuracy can be higher. This 
paper presents the implementation of an enhanced PSO algorithm combined with a gradient-based quasi-Newton 
Sequential Quadratic Programming (SQP) method for handling structural truss optimization problems. The 
proposed PSO is shown to explore the design space thoroughly and to detect the neighborhood of the global 
optimum. Then the mathematical optimizer, starting from the best estimate of the PSO and using gradient 
information, accelerates the convergence towards the global optimum. A non-linear weight update rule for PSO 
and a simple, yet effective, constraint handling technique for structural optimization are also proposed. The 
performance, the functionality and the effect of different setting parameters are studied. The effectiveness of the 
approach is illustrated in a benchmark structural optimization problem. 
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3. Introduction 
In the past two decades, a number of optimization algorithms have been used in structural design optimization, 
ranging from gradient-based mathematical algorithms to non-gradient probabilistic-based search algorithms, for 
addressing global non-convex optimization problems. Many non-gradient methods have been inspired by natural 
phenomena. The inclination of researchers towards the implementation of methodologies inspired by nature in 
solving engineering problems has led to the invention of many important algorithms such as Evolutionary 
Programming (EP), Genetic Algorithms (GA), Evolution Strategies (ES), among others. 
Recently, a family of optimization methods has been developed based on the simulation of social interactions 
among members of a specific species looking for food or resources in general. One of these methods is the Particle 
Swarm Optimization (PSO) method that is based on the behavior reflected in flocks of birds, bees and fish that 
adjust their physical movements to avoid predators and seek for food. The method has been given considerable 
attention in recent years among the optimization research community. It was first proposed by Kennedy and 
Eberhart [1] as a population-based optimization method built on the premise that social sharing of information 
among the individuals can provide an evolutionary advantage.  
A number of advantages over other algorithms make PSO a prospective candidate to be used in structural 
optimization problems. It can handle non-linear, non-convex design spaces with discontinuities. Compared to 
other optimization methods it is considered efficient in terms of number of function evaluations as well as robust 
since it usually leads to better or the same quality of results. Its easiness of implementation makes it more attractive 
as it does not require specific domain knowledge information, while being a population-based algorithm, it can be 
easily implemented in parallel computing environments leading to a significant reduction of the total 
computational cost. Compared to GA, PSO is easier to implement and there are only a few parameters to adjust. 
PSO has been successfully applied to many fields, such as mathematical function optimization, artificial neural 
network training and fuzzy system control. 
Particle swarms had not been used in the field of structural design optimization until recently, where limited 
studies have been performed. Promising results have been presented in the areas of structural shape optimization 
[2, 3] as well as topology optimization [4]. Perez and Behdinan [5, 6] implemented the PSO algorithm for 
constrained structural optimization of plane and space truss structures while Li et al [7] tried a heuristic PSO 
scheme for the optimization of truss structures. 
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The numerical tests performed with the PSO algorithm have shown rapid convergence during the initial stages of a 
global search, but at the neighborhood of the global optimum, the search process becomes rather slow, a typical 
behavior of all evolutionary type optimization algorithms. On the contrary, recent studies revealed that gradient 
descending method can achieve faster convergence speed around global optimum and, at the same time, the 
convergence accuracy can be higher. 
Various hybrid methods that combine evolutionary algorithms with mathematical optimizers have been proposed 
in the past. Papadrakakis and Lagaros implemented a hybrid GA-MP scheme for structural sizing optimization [8], 
while Papadrakakis et al. proposed a hybrid ES-SQP scheme for structural shape optimization [9] with very 
satisfactory results. Hybrid PSO methods have also been proposed recently. Kaveh and Talatahari [10] 
implemented a hybrid PSO and ant colony optimization for the design of truss structures. Izui et al. [11, 12] 
combined a PSO scheme with gradients where the members of the swarm were divided into Sequential Linear 
Programming (SLP) and PSO individuals. Dimopoulos [13] proposed a hybrid GA-PSO scheme for optimizing 
mathematical functions and optimally designing a welded beam and a pressure vessel for minimum cost, while 
Jing-Ru Zhang et al. [14] proposed a hybrid particle swarm optimization – back-propagation algorithm for 
feedforward neural network training. 
In this work, a novel hybrid algorithm combining the PSO algorithm with a gradient-based quasi-Newton 
Sequential Quadratic Programming (SQP) algorithm, referred to as PSO–SQP is proposed to optimize engineering 
structures. The hybrid algorithm can make use of not only the strong global searching ability of the PSO, but also 
the strong local searching ability of the SQP algorithm. Enhancements are also proposed for the PSO algorithm for 
constrained structural optimization with a new implementation of a non-linear cubic weight update rule and a 
simple yet effective constraint handling technique. 
 
4. Formulation of the structural optimization problem 
A general continuous structural optimization problem can be stated as follows: 
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where x is a vector of length n containing the design variables, f(x) : n →\ \  is the objective function, which 
returns a scalar value to be minimized (usually the weight of the structure), the vector function g(x)  :  n m→\ \  
returns a vector of length m containing the values of the inequality constraints evaluated at x and xL, xU are two 
vectors of length n containing the lower and upper bounds of the design variables, respectively. 
 
5. The PSO algorithm for unconstrained optimization 
In a PSO formulation, multiple candidate solutions coexist and collaborate simultaneously. Each solution is called 
a “particle” that has a position and a velocity in the multidimensional design space. A particle “flies” in the 
problem search space looking for the optimal position. As “time” passes through its quest, a particle adjusts its 
velocity and position according to its own “experience” as well as the experience of other (neighboring) particles. 
Particle's experience is built by tracking and memorizing the best position encountered. As every particle 
remembers the best position it has visited during its “flight”, the PSO possesses a memory. A PSO system 
combines local search method (through self experience) with global search method (through neighboring 
experience), attempting to balance exploration and exploitation. 
 
5.1 Mathematical formulation of PSO 
Each particle maintains two basic characteristics, velocity and position in the multi-dimensional search space, that 
are updated in a stochastic way as follows: 
 1 1 2 2( 1) ( ) ( ( )) ( ( ))t w t c r t c r t+ = + − + −j j Pb, j j Gb jv v x x x x  (2) 

 ( 1) ( ) ( 1)t t t+ = + +j j jx x v  (3) 
where vj(t) denotes the velocity vector of particle j at time t, xj(t) represents the position vector of particle j at time 
t, vector xPb,j is the memory of particle j at current iteration (the personal best ever position of the particle, 
corresponding to the objective function value Pbestj), and vector xGb is the global best location found by the entire 
swarm up to the current iteration (corresponding to the objective function value Gbest, the same for all particles). 
The acceleration coefficients c1 and c2 represent “trust” settings which indicate the degree of confidence in the best 
solution found by the individual particle (c1 - cognitive parameter) and by the whole swarm (c2 - social parameter), 
respectively, while r1 and r2 are two random numbers with uniform distribution in the interval [0, 1]. 
In the above formulation, the global best location found by the entire swarm up to the current iteration (xGb) is 
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used. This is called a fully connected topology (fully informed PSO), as all particles share information with each 
other about the best performer of the swarm. 
The term w of Eq. (2) is the inertia weight, a scaling factor employed to control the exploration abilities of the 
swarm, which scales the current velocity value affecting the updated velocity vector. The inertia weight was not 
part of the original PSO algorithm [1], as it was introduced later by Shi and Eberhart [15] in a successful attempt to 
improve convergence. Large inertia weights will force larger velocity updates allowing the algorithm to explore 
the design space globally. Similarly, small inertia values will force the velocity updates to concentrate in the 
nearby regions of the design space. The inertia weight can also be updated during iterations, as will be described in 
detail in section 6. 
Particles' velocities in each dimension i (i=1, …, n) are restricted to a maximum velocity vmax

i. The vector vmax of 
dimension n holds the maximum absolute velocities for each dimension. It is more appropriate to use a vector 
rather than a scalar, as in the general case different velocity restrictions can be applied for different dimensions of 
the particle. If for a given particle j the sum of accelerations of Eq. (2) causes the absolute velocity for dimension i 
to exceed vmax

i, then the velocity on that dimension is limited to ± vmax
i. The vector parameter vmax is employed to 

protect the cohesion of the system, in the process of amplification of the positive feedback. 
 
5.2 Design variables bounds handling 
As shown in Eq. (1), constraints also apply in the available space for every design variable xi, as in vector terms 
xL ≤ x ≤ xU. If, after the velocity update rule of Eq. (2), the position update of Eq. (3) forces a particle to move 
outside the bounds for a dimension i (xi ≤ xL

i or xi ≥ xU
i), then the design variable xi is reset to the closest bound 

(xi = xL
i or xi = xU

i). In order to avoid considering any points outside the specified design space, the corresponding 
coefficient vi of the velocity vector v is reset to zero, to be used for the next iteration. 
 
5.3 Main PSO parameters 
The basic PSO has only a few parameters to adjust. These parameters are the number of particles NP (a typical 
range is 10 – 40), the dimension of the particles n (determined by the problem to be optimized), the inertia weight 
w (usually set to a value less than 1), the vectors containing the lower and upper bounds of the n design variables, 
xL, xU, respectively, the vector containing the maximum allowable velocity for each dimension during one 
iteration vmax, and the cognitive and social parameters, c1 and c2, respectively. Usually c1 = c2 = 2. Other values can 
also be used, provided that 0 < c1+c2 < 4, as suggested in [6]. 
 
5.4 Convergence criteria 
Due to the repeated process of the PSO search, convergence criteria have to be applied for the termination of the 
optimization procedure. In the present study, together with the maximum number of iterations tmax, we have 
implemented the convergence criterion connected to the rate of improvement of the value of the objective function 
for a given number of iterations. If the relative improvement of the objective function over the last kf iterations 
(including the current iteration) is less or equal to a threshold value fm, convergence is supposed to have been 
achieved. In mathematical terms, denoting as Gbestt the best value of the objective function found by the PSO at 
iteration t, the relative improvement of the objective function can be written for the current iteration t as follows: 
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6. PSO for constrained structural optimization 
Two important features which require special attention when dealing with practical engineering optimization 
problems are the improvement of the convergence rate and the handling of the problem constraints. As described 
below, different modifications can be made to the original algorithm to address these features making it much 
capable of dealing with more demanding constrained optimization problems such as those customary present in 
optimum design of engineering structures. 
 
6.1 Inertia weight update 
The PSO global convergence is affected by the degree of local/global exploration provided by the c1 and c2 
parameters, while the relative rate of convergence is affected by the inertia weight parameter. Studies have shown 
that for a fixed inertia value there is a significant reduction in the algorithm convergence rate as iterations progress. 
This is the consequence of excessive momentum in the particles, which results in large step sizes that overshoot the 
best design areas. During the initial optimization stages, a large inertia weight is needed in order for the design 
space to be searched thoroughly. Once the most promising areas of the design space have been discovered and the 
convergence rate starts to slow down, the inertia weight should be reduced, in order for the particles’ momentum to 
decrease allowing them to concentrate in the best design areas. In order to accomplish the above strategy, Shi and 
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Eberhart [15] proposed a time-dependent value of the inertia weight. A commonly used inertia update rule is the 
linearly-decreasing, calculated by the formula: 

 max min
1 max

max
t

w w
w w t

t+
−

= −  (5) 

where t is the iteration number (starting from iteration 0), wmax and wmin are the maximum and minimum values, 
respectively, of the inertia weight. In general, the linearly decreasing inertia weight has shown better performance 
than the fixed one. 
In the present work, a new non-linear weight update strategy is adopted: The total allowed iterations tmax are 
divided into three stages. At the end of each stage, the change (reduction) of w compared to the one at the end of the 
previous stage has to be aw times its value. Given that, we can define the value of w at tmax/3 and 2·tmax/3 iterations. 
A cubic polynomial is then calculated that interpolates the four points (starting point, ending point and two 
intermediate points), as shown in Figure 1. 

 

 

 

 
Figure 1: The proposed non-linear weight update rule drawn for tmax = 90, wmin = 0.5, wmax = 1 and aw = 2. 

 
Compared to the linear update rule, the proposed non-linear 3rd order formulation has the advantage of a fast 
reduction of the inertia weight in the first stage of the optimization, while in the vicinity of the optimum, the 
reduction becomes slower. This type of behavior is in most cases favorable in PSO optimization, as will be shown 
in the numerical examples section. The linear update rule can be obtained by setting aw = 1. Typical values for aw 
are in the interval [1.0, 2.0]. 
 
6.2 Constraint handling techniques 
Although the PSO has been applied for the solution of a number of problems recently, its applications are mainly 
focused on unconstrained optimization. Various methods have been proposed for handling non-linear constraints 
by Evolutionary Algorithms in general. Koziel et al. [16] grouped them into four categories: methods based on 
preserving feasibility of the solutions; methods based on penalty functions; methods that search for feasibility; 
other hybrid methods. Very few studies have extended the application of PSO to constrained optimization 
problems (Hu and Eberhart 2002; Parsopoulos and Vrahatis 2002). 
A simple approach for PSO would be to recalculate the velocity vector for an infeasible particle using new random 
numbers r1 and r2, until the new position of the particle becomes feasible. This simplistic approach guarantees the 
feasibility of the final optimum design, yet it has a strong disadvantage as it needs too many calculations of the 
constraint functions and subsequently of finite element analyses, especially in cases where the feasible region is 
small compared to the entire design space, making it impractical for structural engineering applications. 
Another approach is to avoid taking into account the infeasible designs in the calculation of Pbest or Gbest for a 
particle, given that the swarm is initialized in the feasible region [17]. This “death penalty” approach that 
guarantees the feasibility of the final optimum has the disadvantage that is does not take into account the degree of 
the violation of the constraints. Moreover, a search over the feasible region only is usually less efficient than over 
both the feasible and infeasible region, as the latter makes it possible to approach the optimum from any direction 
[18]. 
Venter and Sobieszczanski-Sobieski [3] proposed a constraint handling mechanism for PSO that redirects the 
violated designs back to the feasible region. After a particle j has moved to an infeasible position at iteration t, the 
method modifies the velocity vector vj(t), by re-setting it to zero. Then, the velocity vector vj(t+1) for next iteration 
t+1 is obtained from Eq. (2) omitting the inertia coefficient w·vj(t) that equals zero. The new velocity of particle j at 
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iteration t+1 is thus only influenced by the best point found so far by the particle (xPb,j) and the current best point 
found by the entire swarm (xGb). Given that both these best points are feasible, the new velocity vector will point 
back to a feasible region of the design space, ensuring in most cases that the particle is directed back to the feasible 
space, or at least closer to the feasibility boundary. This method is also simple, but has the disadvantage that it does 
not guarantee feasibility of the particles and as a result, there is no guarantee that at the optimum solution all 
constraints will be satisfied. 
Some researchers attempted to solve the constrained problem indirectly by transforming it to an unconstrained 
problem using the traditional penalty function strategy [6, 19]. The penalty function is an effective auxiliary tool to 
deal with constrained problems in general and has been a popular approach because of its simplicity and ease of 
implementation. 
In the present study, a simple yet effective multiple linear segment penalty function is proposed to deal with 
constraints. Consider a structural optimization problem where displacement and stress constraints are imposed. 
For a given design x, the corresponding objective function value is computed and a finite element analysis is 
performed for the constraints check where each structural element is checked for stress violation, and each model 
node is checked for displacement violation. If no violation is detected, then no penalty is imposed on the objective 
function f(x). If any of the constraints are violated, a penalty is applied to the objective function and the value of the 
penalty is related to the degree to which the constraints are violated. 
For the typical constraint k in structural optimization of the form gk(x) = |qk(x)| - qallow,k ≤ 0, where qk(x) is a response 
measure (usually stress or displacement) for design x and qallow,k is its maximum allowable absolute value, the 
penalty function Φk(x) for this constraint is defined as: 
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Having obtained the penalty function factors for all violated constraints, the penalized fitness value of a design x is 
obtained by multiplying the objective function (structural weight or structural material volume) to be minimized 
by the maximum penalty factor among all m constraints: 
 ( ) ( ) max{ ( )}, 1, ,p kf f k m= ⋅ Φ =x x x …  (7) 
where fp is the new fitness (penalized objective function). The resulting penalized objective function quantitatively 
represents the extent of the violation of constraints and provides a relatively meaningful measurement of the 
performance of each solution. 
Using the above formulation, there is a case where the penalized objective function fp(x) can obtain a better value 
compared to the global optimum Gbestt found by the entire swarm until iteration t. This will result in resetting 
Gbestt to a value corresponding to an infeasible design. Indeed, this can happen for an infeasible design if f(x)/ 
Gbestt < max{Φk(x)}. In order to avoid this undesirable case, Gbestt is used instead of f(x) in Eq. (7), when f(x) < 
Gbestt and max{Φk(x)}>1 (infeasible design). In this sense, Gbestt is penalized instead of f(x), for infeasible 
designs with objective functions f(x) better than Gbestt. This ensures that the best design found by the swarm will 
always stay in the feasible region, as will be shown in the numerical examples section. 
 
7. Gradient-based SQP method 
Mathematical (gradient-based) optimization methods are generally considered as local methods. They exhibit fast 
convergence by exploiting gradient information but they cannot guarantee the estimation of the global optimum, as 
they can be easily trapped in local minima. These methods require user-defined initial estimates of the solution. 
The mathematical optimizer used in this study is a Sequential Quadratic Programming (SQP) method. SQP 
methods are the standard general purpose mathematical programming algorithms for solving Non-Linear 
Programming (NLP) optimization problems. They are also considered to be the most suitable methods for solving 
structural optimization problems with the mathematical programming approach. Such methods make use of local 
curvature information derived from linearization of the original functions, by using their derivatives with respect 
to the design variables at points obtained in the process of optimization. 
Given the problem description of Eq. (1), SQP method proceeds with the conversion of the NLP problem into a 
sequence of Quadratic Programming (QP) subproblems based on a quadratic approximation of the Lagrangian 
function. 

 
1

( , ) ( ) ( )
m

k k
k

L f gλ
=

= +∑x x xλ  (8) 

where λk are the Lagrange multipliers under the non-negativity restriction for the inequality constraints. The QP 
subproblem can be obtained by linearizing the nonlinear constraints. Each QP subproblem has the following form: 
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Where p is the search direction and HA a positive definite approximation of the Hessian matrix of the Lagrangian 
function of Eq. (8). In order to construct the Jacobian and the Hessian matrices of the QP subproblem, the 
derivatives of the objective and constraint functions are required. These derivatives can be calculated either 
analytically, using a closed form if available, semi-analytically or with a global finite difference method, which is 
used in this study. 
An estimate of the Hessian of the Lagrangian function is updated at each iteration using the 
Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton formula and a line search is performed using a merit 
function in order to determine the step length parameter al. The new design point is then calculated as 
 1 a+ = + ⋅x x pAA A A  (10) 

where A denotes the current SQP iteration. The QP subproblem is solved using an active set strategy. Constrained 
quasi-Newton methods guarantee superlinear convergence by accumulating second-order information regarding 
the Karush-Kuhn-Tucker (KKT) equations using a quasi-Newton updating procedure. The KKT equations are 
necessary conditions for optimality for a constrained optimization problem. 
 
8. Hybrid PSO-SQP algorithm 
An important feature of the SQP optimizer is that it captures relatively fast the right path to the nearest optimum. 
Yet, unless a good model initialization is provided, the algorithm can converge to a local suboptimum. Therefore, 
global algorithms - less vulnerable to local optima attractors and therefore more reliable in obtaining the global 
optimum for non-convex optimization problems are frequently proposed, but have often exhibited inacceptable 
slow convergence rates due to their random search, especially near the area of the global optimum. In an effort to 
increase the robustness and the computational efficiency of the optimization procedure, hybrid algorithms can 
benefit from the advantages of both methodologies and alleviate their particular drawbacks. The proposed hybrid 
optimization strategy is divided into two separate phases. During the first phase, the PSO explores the design space 
thoroughly and detects the neighborhood of the global optimum. When the PSO process terminates using a rather 
relaxed termination criterion, the second phase starts by applying the SQP method starting from the best estimate 
of the PSO and using gradient information to accelerate convergence to the global optimum. The combined 
algorithm is denoted as PSO-SQP. 
 
9. Numerical example 
The performance of the proposed optimization algorithm is examined in a benchmark test example, a space truss 
with 25 members and 8 design variables. The PSO scheme used in the study is the fully informed PSO, equipped 
with the non-linear inertia update rule described in section 6.1 and the constraint handling technique of section 6.2, 
unless otherwise stated. The structure is depicted in Figure 2. Variations of this test example can be found in the 
literature [6, 20]. The nodal coordinates are shown in Table 1. 
 
 

  
 

Figure 2: 3D view and top view of the 25 bar space truss 
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Table 1: Nodal coordinates (in inches) 
 

Node  x y z Node  x y z 
1 -37.5 0 200 6 -37.5 -37.5 100 
2 37.5 0 200 7 -100 100 0 
3 -37.5 37.5 100 8 100 100 0 
4 37.5 37.5 100 9 100 -100 0 
5 37.5 -37.5 100 10 -100 -100 0 

 
The structural characteristics are the following: Modulus of Elasticity E = 100,000 ksi, material weight 
ρ = 0.1 lb/in3. The structural members are divided into 8 groups. The design variables are the cross section areas of 
each member group in the range [0.01, 5] (in2). The 8 design variable groups together with the constraints imposed 
on stresses for each group are presented in Table 2. 
 

Table 2: Design variable groups and allowable stresses (ksi) 
 

Design 
variable  Member 

Allowable 
tension 

Allowable 
compression 

Design 
variable  Member 

Allowable 
tension 

Allowable 
compression 

1 1 40 -35.092 5 12,13 40 -35.092 
2 2-5 40 -11.590 6 14-17 40 -6.759 
3 6-9 40 -17.305 7 18-21 40 -6.759 
4 10,11 40 -35.092 8 22-25 40 -11.082 

 
The maximum allowable displacement in the ±x, ±y and ±z directions for each node is dmax = 0.35 in. Two load 
cases have been considered. The nodal loads in kip units in the format (#Node_ID, Fx, Fy, Fz) are for load case 1: 
(#1, 1, 10, -5), (#2, 0, 10, -5), (#3, 0.5, 0, 0), (#6, 0.5, 0, 0) and for load case 2: (#1, 0, 20, -5), (#2, 0, -20, -5). The 
objective is to minimize the weight of the structure under the constraints described above for both load cases 
simultaneously. 
 
9.1 Inertia weight update rule investigation 
The influence of the inertia update rule on the optimization process of the PSO schemes will be investigated first. 
Three PSO schemes are considered. The basic PSO used has the following parameters: NP = 15, n = 8, wmax = 0.95, 
wmin = 0.5, xL

i = 0.01, xU
i = 5 for all dimensions, vmax,i = 2.5 for all dimensions, c1 = c2 = 2, tmax = 200. Since two load 

cases are considered, the number of finite element analyses needed for each iteration is 2·NP = 30, while the 
number of objective function evaluations for each iteration is NP. Ten PSO optimization runs are performed for 
each of the three cases. The results obtained for 200 PSO iterations are reported in Table 3 which shows the 
objective function values obtained for the best run, the worst run and the average of the 10 runs for each case. 
 

Table 3: Statistical results for 10 PSO runs after 200 iterations 
 

Result Fixed rule (w = wmax) Linear rule Non-linear cubic rule (aw = 1.3) 
Best 599.79 547.78 545.45 
Worst 679.46 604.92 558.97 
Average 627.35 557.14 549.08 

 
Figure 3 depicts the convergence history for the three cases, in terms of the average result over 10 optimization 
runs. Furthermore, the performance of the algorithm is studied with the convergence criterion fm = 10-6 connected 
to the relative improvement of the objective function over the last kf = 30 iterations. The results reported in Table 4 
include the average number of iterations needed for convergence and the objective function values obtained for the 
best run, the worst run and the average of the 10 runs. The non-linear rule outperforms the other two rules in terms 
of the best result, the worst result and the average result for 10 runs, due to its smoother convergence 
characteristics. 

Table 4: Statistical results for 10 PSO runs 
 

Result Fixed rule (w = wmax) Linear rule Non-linear rule (aw = 1.3) 
Average no. of iterations 107 144 175 
Best 581.72 576.80 546.12 
Worst 697.88 692.44 694.15 
Average 659.60 633.97 576.16 
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Figure 3: Convergence history for the three PSO schemes 

 
9.2 The hybrid PSO-SQP method 
First the SQP is applied alone, for various initial designs. Four initial designs have been selected, namely the ones 
corresponding to design variables values 5, 3.5, 2 and 0.5 for every dimension of the problem. It can be seen that 
the SQP method converges to suboptimal design points, or does not converge at all, as a good model initialization 
is always required for SQP to produce good results. Next, we implement the PSO-SQP scheme. If the relative 
improvement of the objective function over the last kf = 15 iterations of the PSO optimizer is less or equal to 
fm = 10-4, the PSO phase is terminated and subsequently the SQP starts from the best estimate of the PSO. The SQP 
termination criterion is connected to the first order optimality measure for constrained optimization, in terms of the 
infinite norm. If the magnitude of directional derivative in the search direction is less than a tolerance value of 10-5 
and there is no constraint violation, convergence has been achieved. 
 

Table 5: Convergence behavior of SQP 
 

Starting point Iterations Obj. fun. evaluations Obj. function value 
“5” 34 396 825.991 

“3.5” 41 514 825.991 
“2” 18 308 653.357 

“0.5” 100 1204 No convergence 
 

 
Figure 4: Convergence history for the hybrid PSO-SQP 

 
The convergence history of the hybrid PSO-SQP scheme, compared to the simple PSO scheme is depicted in 
Figure 4 in terms of objective function value and the objective function evaluations. In the hybrid scheme, the PSO 
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needs 960 function evaluations to reach an objective function value of 687.097, while from that point on, SQP 
needs 306 objective function evaluations to converge to an optimum value of 545.037. The total number of 
objective function evaluations for the hybrid scheme is 1266. 
The best design obtained by the hybrid PSO-SQP method, together with the best result of the PSO employing the 
non-linear rule and the results of Zhou & Rozvany [20] are presented in Table 6. 
 

Table 6: PSO results for the second test example 
 

Design Variable Zhou & Rozvany (1993) PSO 
(This study) 

Hybrid PSO-SQP 
(This study) 

A1 0.0100 0.01000 0.01000 
A2 1.9870 2.0363 2.04300 
A3 2.9935 3.1216 3.00239 
A4 0.0100 0.01000 0.01000 
A5 0.0100 0.01000 0.01000 
A6 0.6840 0.6740 0.68337 
A7 1.6769 1.5771 1.62296 
A8 2.6621 2.6657 2.67194 

Weight 545.163 545.45 545.037 
 
It can be seen that the best design, in terms of objective function value, is the one achieved by PSO-SQP. It can also 
be seen that although the result of Zhou & Rozvany is slightly better than the one obtained with the proposed PSO, 
there is a slight violation of the maximum nodal displacement constraint. For the optimum designs achieved by 
PSO and PSO-SQP, all constraints have been met while the maximum nodal displacement constraint is active. 
 

Table 7: Feasibility of the optimum design 
 

  Zhou & Rozvany (1993) PSO 
(This study) 

Hybrid PSO-SQP 
(This study) 

Constraints Allowable 
value Value Active Value Active Value Active 

Max stress (tensile) 40 6.9846 ○ 7.3735 ○ 7.1580 ○ 
Max Nodal 
Displacement 0.35 0.3500012 (v) ● 0.3499 ● 0.3500- ● 

 
10. Conclusions 
This work introduces an optimization algorithm for the optimum structural design of space trusses based on the 
Particle Swarm algorithm. A non-linear weight update rule for PSO, an efficient constraint handling technique and 
a hybrid PSO-SQP scheme for global structural optimization are proposed and evaluated in a benchmark problem. 
The non-linear weight update rule for PSO showed better performance than the fixed or the linear rule, especially 
in cases where a termination criterion connected to the relative improvement of the objective function was used, 
exhibiting smoother convergence. 
The constraint handling technique used in this study, based on a linear segment penalty function, showed excellent 
performance, since it always led to feasible optimal designs, while taking also advantage of infeasible designs 
during the optimization procedure. 
The proposed hybrid algorithm based on the PSO and SQP is a well-suited optimization tool for solving 
non-convex optimization problems in identifying the global optimum from multiple local ones. The numerical 
results demonstrated the efficiency of the proposed hybrid PSO-SQP algorithm for structural optimization 
problems. 
In the standard PSO procedure, the characteristic parameters have to be fine-tuned carefully, based on the 
experience of the designer, or on trial and error and any other information available for the specific problem at 
hand. The selection of the PSO parameters plays a significant role in the result of the process in terms of both 
convergence rate and final optimum design achieved. In general, a bad selection of these parameters can lead to a 
poor result. By using the proposed hybrid PSO-SQP methodology, the significance of the PSO parameters is 
substantially alleviated. There is no need of fine-tuning the PSO algorithm for obtaining a high quality final result 
since the SQP optimization phase can improve drastically the PSO solution and increase significantly the 
robustness of the optimization scheme. The hybrid optimization algorithm performs better than the standard PSO 
in terms of both convergence rate and final design achieved. 
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