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Abstract. The dynamic equation of motion of a SDOF system with a nonlinear elastic hard-

ening spring, a SDOF system with a nonlinear elastic softening spring and a SDOF system 

with a nonlinear elastic-plastic spring is integrated numerically using a family of linear gen-

eralized single step-single solve algorithms. For this purpose, these algorithms are extended 

by using a Newton-Raphson type iterative procedure in each time step to ensure dynamic 

equilibrium. After a literature review of the available time integration schemes used for non-

linear problems, the linear family of algorithms is presented along with several common time 

integration algorithms as special cases of the generalized algorithm. An explicit flowchart is 

given showing the integration procedure used in the present study. The modified algorithm is 

applied to the aforementioned three types of SDOF systems and results concerning phase por-

traits, (relative) energy decrease, iterations needed for equilibrium and internal force - dis-

placement curves are presented. It is shown that the algorithms with optimal numerical 

dissipation and dispersion perform in general better than others, and that from the algorithms 

with optimal numerical dissipation and dispersion, only the one with zero-displacement and 

zero-velocity overshooting behavior can capture efficiently the elastoplastic dynamic re-

sponse. 
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1 INTRODUCTION 

The dynamic analysis of engineering structures under dynamic loading (earthquake, impact, 

etc.) with the finite element method results in a set of ordinary differential equations as fol-

lows: 

   , Mu p u u f t (1) 

where M is the mass matrix, p is the internal force vector, which is in general a nonlinear 

function of the displacements u  and velocities u  and is equal to the sum of the forces in the 

structure due to stiffness and damping, and f is the external force vector which is a function of 

time t. In the case of a linear elastic structure with viscous damping  ,p u u  is equal to:

 ,  p u u Ku Cu (2) 

where K  is the stiffness matrix and C  is the damping matrix, both of them independent of 

the displacement and velocity. Linear equations of dynamic equilibrium of the form of (1) in 

which  ,p u u  is given by (2) can be solved using various superposition methods in the time

or frequency domain, which greatly simplify the problem. However, in dynamic analysis of 

nonlinear response, superposition cannot be used and one has to resort to step-by-step meth-

ods. 

Direct time integration (or time stepping, or step by step) methods are a widely used ap-

proach to solve dynamic linear or nonlinear response analysis problems. In these methods the 

equilibrium relations are satisfied at discrete time points (or steps) of the loading and the re-

sponse history. The response during each step is calculated from the displacement and veloci-

ty at the beginning of the step and from the history of loading during the step. Thus the 

response for each step is an independent analysis problem. 

The most common characteristics of integration schemes are the following: 

 Stability. An integration scheme is said to be stable if the numerical solution, under

any initial conditions, does not grow without bound. An algorithm is unconditionally

stable for linear problems if the convergence of the solution is independent of the size

of the time step.

 Convergence. An integration scheme is convergent if the numerical solution ap-

proaches the exact solution as the size of the time step tends to zero.

 Accuracy. Two numerical errors are associated with the accuracy of any algorithm: (a)

numerical dispersion (often expressed in terms of period elongation) and (b) numerical

dissipation (often expressed in terms of either the amplitude decay or the algorithmic

damping ratio).

 Algorithmic dissipation. It is a kind of filtering of the higher frequency oscillations,

necessary to eliminate the spurious high frequency modes inherent in a finite element

mesh.

 Self-starting. This type of algorithms requires data from two time steps to proceed the

solution. If data from more than two time steps are needed, the algorithm must be im-

plemented with a starting procedure.

 Overshooting. It is the tendency of an algorithm to exceed heavily the exact solution in

the first few time steps, but eventually to converge to the exact solution.
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Taking into account the above characteristics, a time integration scheme should have the fol-

lowing desirable features [1]: 

 Unconditional stability.

 At least second-order accuracy in time.

 No more than zero-order displacement and velocity overshooting behavior with minimal

numerical dissipation and dispersion.

 Self-starting features with no more than one set of single-field system of implicit equa-

tions to be solved at each time step to include ease of implementation and computational

simplicity.

Regarding linear dynamic response, accuracy is the main concern, since many time integra-

tion algorithms are unconditionally stable. However, algorithms which are unconditionally 

stable for linear dynamics, often lose this stability for nonlinear dynamics, and therefore nu-

merical stability is of primary interest in such cases. 

In this study, after a concise literature review about the numerical direct time integration 

algorithms applicable to the dynamic equilibrium equations of structural analysis of the form 

(1), a general single step linear integration group of algorithms is presented, which incorpo-

rates many well-known algorithms, and which is modified to account for nonlinear response, 

by introducing a Newton-Raphson iterative procedure at each time step. Afterwards, the mod-

ified algorithm is applied to known nonlinear dynamic analysis example problems and the re-

sults are studied. Apart from its robustness in solving nonlinear problems, it is proved that the 

algorithm can be designed to cope with cases with any degree of nonlinearity. 

2 LITERATURE REVIEW 

The simplest direct time integration method for dynamic analysis is the piecewise exact 

method in which the equation of motion is solved exactly for linear loading during each time 

step, in which it is assumed that the actual loading history has constant slope [2]. Although 

the equation of motion is solved rigorously during each time step, the linear interpolation of 

the excitation function introduces some error into the calculated response; this can be elimi-

nated either by reducing the length of the time step, or adjusting the latter so that the intro-

duced loading history fits best the actual one. 

The numerical direct time integration methods can be classified as either explicit or implic-

it. An explicit scheme is one in which the response values for the next step are calculated only 

from quantities belonging to the current step. On the other hand, an implicit scheme is one in 

which the expressions giving the values for the next step include one or more values of the 

next step, and therefore successive iterations are needed to arrive to the solution for the next 

step. Implicit methods lead in general to increased computational effort, although it is possi-

ble for some of them to be converted into an explicit formulation. Algorithms that require two 

or more implicit systems to be solved at each time step have improved properties [3], but they 

require twice or more the computational effort of simpler methods. 

Another classification that can be made is according to the formulation used to ensure conser-

vation (or decay) of energy within a time step which is a sufficient condition for algorithmic 

stability [4]. This energy criterion is summarized in the following inequality: 

   1 1    n n n n extU K U K W (3) 

where Un+1 and Un represent the strain energy at the end and at the beginning of the time step 

respectively, Kn+1 and Kn are the corresponding kinetic energies and Wext represents the work 
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done by external forces within the time step. This classification results in the following three 

categories of algorithms which satisfy inequality (3): 

 Algorithms which employ numerical dissipation.

 Algorithms extending others by using constraints of energy conservation imposed via

Lagrange multipliers (Constraint Energy Method), the first of which was presented in [5].

 Algorithms which enforce energy conservation algorithmically such as the energy-

momentum method presented in [6]. In the absence of external loading these algorithms

are designed to obey the following laws:

0, 0, 0    
tot

t t tdL dJ dE

dt dt dt
 (4) 

where Lt is the linear momentum, Jt is the angular momentum and tot

tE  is the total energy. 

Combinations of algorithms of different categories from the above have also been made. The 

Constraint Energy Momentum Algorithm developed in [7] combines numerical dissipation 

algorithms and enforced energy conservation algorithms, whereas combinations of numerical 

dissipation algorithms and algorithms which ensure energy conservation algorithmically are 

presented in [4,11]. 

Another alternative for more accurate and stable time integration algorithms is the concept 

of composition, namely the combination of two or more algorithms which gives other compo-

site algorithms which are more efficient. Each time step is divided into two or more substeps, 

at which different independent integration schemes are applied. Equilibrium is satisfied at 

each time substep. The final solution depends on the algorithms used as well as on the way of 

partition of the time steps. The most representative method is presented in [8], whereas a clas-

sification of these methods is presented in [9]. 

An additional method to solve time dependent problems is the Whole Element Method 

(WEM) in which time is incorporated along with the other spatial variables into a direct varia-

tional method. Therefore, the initial condition problem can be converted into a boundary val-

ue problem, containing both spatial and temporal variables. This method is outlined in [10]. 

3 MODIFIED NONLINEAR TIME INTEGRATION ALGORITHM 

3.1 The linear generalized single step single solve algorithm 

The equation of motion of a Single Degree of Freedom (SDOF) linear structure is given by 

the combination of the SDOF counterparts of (1) and (2): 

         Mu t Cu t Ku t f t (5) 

with initial conditions: 

   0 00 , 0  u u u u (6) 

Equation (5) can be applied to MDOF structures, given that the latter can be decomposed into 

a finite number of SDOF structures using various superposition methods. In [1] it is shown 

that the Dahlquist theorem holds not only for the linear multistep methods (LMS), but also for 

the general single step single solve (GSSSS) time integration algorithms, which are spectrally 

identical to the former. This theorem states that a GSSSS algorithm which is unconditionally 

stable, can be at most second order accurate. 

Equation (5) can be represented as a time weighted residual as follows: 
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 
0



  
t

TW Mu Cu Ku f dt (7) 

where the weighted time field is assumed to be of the form 

2 3

1 2 31     W w w w (8) 

and: 

1/ , ,n n nt t t t t t            (9) 

The dependent field variables ( u , u , u ) can be approximated by the following asymptotic 

series expansions: 
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6

 
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n n

n

u u
u u

t
 (12) 

and the load vector is expanded to first order via a Taylor series: 

1 
 


n n

n

f f
f f

t
 (13) 

The updates of displacement and velocity are given by the relations: 

 2 2

1 1 2 3 1          n n n n n nu u u t u t u u t (14) 

 1 4 5 1       n n n n nu u u t u u t (15) 

The update of acceleration is given by substitution of equations (8) to (15) into (7) as follows: 
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(16) 

where the constants Wi are given by: 
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(17) 

There are 12 independent integration constants that are needed in order to apply the equations 

(16), (14) and (15) to proceed to the next step: W1, W1Λ1, W2Λ2, W3Λ3, W1Λ4, W2Λ5, W1Λ6, 

λ1, λ2, λ3, λ4, λ5. Each set of these parameters defines the algorithm uniquely, and can be con-

sidered in some way as the algorithm’s signature. Many known time integration algorithms, 
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which will be presented later, result from suitable selection of these parameters. In [1], the 

integration parameters are calculated by imposing several different constraints to the algo-

rithm, regarding order of accuracy, overshooting behavior (in terms of displacement and ve-

locity orders), spurious roots at the high and low frequency limits, dissipation and dispersion 

properties, bifurcation of the principal roots, etc, which results in the derivation of 9 different 

algorithms belonging to the above family. In this study, W1 is calculated directly from (17), 

after specifying the parameters w1, w2, w3. 

3.2 Design of the linear generalized single step single solve algorithm – special cases 

An algorithm is termed to have the property of continuous acceleration, if the acceleration 

1nu  calculated at t=tn satisfies the equation of motion (strong form) at t=tn. Otherwise, the 

algorithm is termed to have the property of discontinuous acceleration [1]. 

The procedure for designing the algorithm presented in the previous section to apply it to 

time integration problems (i.e. setting its 12 integration constants), is presented in [1]. The 

algorithms of the generalized single step family are the following: 

 Zero-order displacement, zero-order velocity, optimal numerical dissipation and disper-

sion (U0-V0-Opt)

 Zero-order displacement, zero-order velocity, continuous acceleration (U0-V0-CA)

 Zero-order displacement, zero-order velocity, discontinuous acceleration (U0-V0-DA)

 Zero-order displacement, first-order velocity, optimal numerical dissipation and disper-

sion (U0-V1-Opt)

 Zero-order displacement, first-order velocity, continuous acceleration (U0-V1-CA)

 Zero-order displacement, first-order velocity, discontinuous acceleration (U0-V1-DA)

 First-order displacement, zero-order velocity, optimal numerical dissipation and disper-

sion (U1-V0-Opt)

 First-order displacement, zero-order velocity, continuous acceleration (U1-V0-CA)

 First-order displacement, zero-order velocity, discontinuous acceleration (U1-V0-DA)

The values of the parameters are shown for various well-known integration schemes in tables. 

In Table 1 the parameters of the central difference method, the average constant acceleration 

method [12], the linear acceleration method [12], the Fox-Goodwin formula [14], the back-

ward acceleration method [13] and the general family of Newmark methods [12]. In Table 2 

the parameters of the zero-order displacement and zero-order velocity overshooting algo-

rithms are presented [1]. In order to evaluate the integration constants, the quantity inf , 

which is the minimum absolute value of the principal roots of the amplification matrix at the 

high-frequency limit, has to be first assigned a desired value, which must lie in the range giv-

en at the appropriate row of the table. If 
inf 1  , the resulting algorithm is non-dissipative. In 

Table 3 the parameters are given for the zero-order displacement, first-order velocity over-

shooting algorithms, presented in [1]. It has to be mentioned that the formulas presented in 

Table 3 correspond to three special cases of these zero-order displacement, first-order velocity 

overshooting algorithms, namely the generalized a-method, the HHT-a method and the WBZ 

a-method, presented in [15,16,17] respectively. Table 4 shows the parameters of the first-

order displacement and zero-order velocity overshooting algorithms. If 
inf 1  , the first-order 

displacement, zero-order velocity, optimal numerical dissipation and dispersion, the first- 
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Central 

Difference 

Method 

Average 

constant 

acceleration 

[12] 

Linear 

Acceleration 

Method [12] 

Fox-

Goodwin 

formula 

[14] 

Backward 

acceleration 

method 

[13] 

Family of 

Newmark 

Methods 

[12] 

w1 -15 -15 -15 -15 -15 -15 

w2 45 45 45 45 45 45 

w3 -35 -35 -35 -35 -35 -35 

W1Λ1 1 1 1 1 1 1 

W2Λ2 0 0.25  1/6  1/12 0.5 β 

W3Λ3 0 0.25  1/6  1/12 0.5 β 

W1Λ4 0.5 0.5 0.5 0.5 0.5 γ 

W2Λ5 0.5 0.5 0.5 0.5 0.5 γ 

W1Λ6 1 1 1 1 1 1 

λ1 1 1 1 1 1 1 

λ2 0.5 0.5 0.5 0.5 0.5 0.5 

λ3 0 0.25  1/6  1/12 0.5 β 

λ4 1 1 1 1 1 1 

λ5 0.5 0.5 0.5 0.5 0.5 γ 

Table 1: Integration parameters for various known time integration schemes. 

U0-V0-Opt U0-V0-CA U0-V0-DA 

ρinf [0    1]  [1/3    1] [0    1] 

w1  -15(1-2ρinf)/(1-4ρinf)  -15(1-5ρinf)/(3-7ρinf) -15 

w2  15(3-4ρinf)/(1-4ρinf)  15(1-13ρinf)/(3-7ρinf) 45 

w3  -35(1-ρinf)/(1-4ρinf)  140ρinf/(3-7ρinf) -35 

W1Λ1  1/(1+ρinf)  (1+3ρinf)/2/(1+ρinf) 1 

W2Λ2  1/2/(1+ρinf)  (1+3ρinf)/4/(1+ρinf)  1/2 

W3Λ3  1/2/(1+ρinf)^2  (1+3ρinf)/4/(1+ρinf)^2  1/2/(1+ρinf) 

W1Λ4  1/(1+ρinf)  (1+3ρinf)/2/(1+ρinf) 1 

W2Λ5  1/(1+ρinf)^2  (1+3ρinf)/2/(1+ρinf)^2  1/(1+ρinf) 

W1Λ6  (3-ρinf)/2/(1+ρinf) 1  (3+ρinf)/2/(1+ρinf) 

λ1 1 1 1 

λ2 1/2  1/2  1/2 

λ3  1/2/(1+ρinf)  1/2/(1+ρinf)  1/2/(1+ρinf) 

λ4 1 1 1 

λ5  1/(1+ρinf);  1/(1+ρinf)  1/(1+ρinf) 

Table 2: Integration parameters for zero-order displacement, zero order velocity overshooting algorithms. 
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U0-V1-Opt [15] U0-V1-CA [16] U0-V1-DA [17] 

ρinf [0    1] [1/2    1] [0     1] 

w1  -15(1-2ρinf)/(1-4ρinf)  -15(1-2ρinf)/(2-3ρinf) -15 

w2  15(3-4ρinf)/(1-4ρinf)  15(2-5ρinf)/(2-3ρinf) 45 

w3  -35(1-ρinf)/(1-4ρinf)  -35(1-3ρinf)/2/(2-3ρinf) -35 

W1Λ1  1/(1+ρinf)  2ρinf/(1+ρinf) 1 

W2Λ2  1/2/(1+ρinf)  ρinf/(1+ρinf)  1/2 

W3Λ3  1/(1+ρinf)^3  2ρinf/(1+ρinf)^3  1/(1+ρinf)^2 

W1Λ4  1/(1+ρinf)  2ρinf/(1+ρinf) 1 

W2Λ5  (3-ρinf)/2/(1+ρinf)^2  ρinf(3-ρinf)/(1+ρinf)^2  (3-ρinf)/2/(1+ρinf) 

W1Λ6  (2-ρinf)/(1+ρinf) 1  2/(1+ρinf) 

λ1 1 1 1 

λ2  1/2  1/2  1/2 

λ3  1/(1+ρinf)^2  1/(1+ρinf)^2  1/(1+ρinf)^2 

λ4 1 1 1 

λ5  (3-ρinf)/2/(1+ρinf)  (3-ρinf)/2/(1+ρinf)  (3-ρinf)/2/(1+ρinf) 

Table 3: Integration parameters for zero-order displacement, first order velocity overshooting algorithms. 

U1-V0-Opt U1-V0-CA U1-V0-DA 

ρinf [0     1] [1/2     1] [0     1] 

w1 
 -30(3-8ρinf+6ρinf^2) / 

(9-22ρinf+19ρinf^2) 

 -60(2-8ρinf+7ρinf^2) / 

(11-48ρinf+41ρinf^2) 
 -30(3-4ρinf)/(9-11ρinf) 

w2 
 15(25-74ρinf+53ρinf^2) 

/ 2 / (9-22ρinf+19ρinf^2) 

 15(37-

140ρinf+127ρinf^2) / 2 / 

(11-48ρinf+41ρinf^2) 

 15(25-37ρinf)/2/(9-

11ρinf) 

w3 
 -35(3-10ρinf+7ρinf^2) / 

(9-22ρinf+19ρinf^2) 

 -35(5-18ρinf+17ρinf^2) 

/ (11-48ρinf+41ρinf^2) 
 -35(3-5ρinf) / (9-11ρinf) 

W1Λ1  (3-ρinf)/2/(1+ρinf)  (1+3ρinf)/2/(1+ρinf)  (3+ρinf)/2/(1+ρinf) 

W2Λ2  1/(1+ρinf)^2  2ρinf/(1+ρinf)^2  1/(1+ρinf) 

W3Λ3  1/(1+ρinf)^3  2ρinf/(1+ρinf)^3  1/(1+ρinf)^2 

W1Λ4  (3-ρinf)/2/(1+ρinf)  (1+3ρinf)/2/(1+ρinf)  (3+ρinf)/2/(1+ρinf) 

W2Λ5  2/(1+ρinf)^3  4ρinf/(1+ρinf)^3  2/(1+ρinf)^2 

W1Λ6  (2-ρinf)/(1+ρinf) 1  2/(1+ρinf) 

λ1 1 1 1 

λ2  1/2  1/2  1/2 

λ3  1/2/(1+ρinf)  1/2/(1+ρinf)  1/(1+ρinf)^2 

λ4 1 1 1 

λ5  1/(1+ρinf)  1/(1+ρinf)  (3-ρinf)/2/(1+ρinf) 

Table 4: Integration parameters for first-order displacement, zero order velocity overshooting algorithms. 

2845



George Papazafeiropoulos, Vagelis Plevris and Manolis Papadrakakis 

order displacement, zero-order velocity, continuous acceleration and the first-order displace-

ment, zero-order velocity, discontinuous acceleration algorithms recover, the first the mid-

point rule a-form algorithm, and the two last the Newmark average acceleration a-form algo-

rithm. 

3.3 Modification of the linear algorithm for nonlinear dynamic response 

In this section the generalized linear family of algorithms presented above is modified to 

account for materially nonlinear dynamic response. To proceed from the current step 

( , ,n n nu u u ) to the next time step ( 1 1 1, ,  n n nu u u ), the secant stiffness and damping matrices are 

needed, which in general depend on 1nu  and 1nu . Since the latter are unknown, the tangent 

stiffness and damping matrices are calculated and iterations are performed to arrive to a con-

verged solution. Convergence is attained via a Newton-Raphson iterative procedure. In some 

time integration algorithms, this iteration is avoided by using the initial tangent matrices in-

stead of updating them, even though this approximation is not correct in principle. 

The outline of the modified nonlinear time integration algorithm used in this study is 

shown in Figure 1. The given data are the mass, stiffness and damping properties of the SDOF 

oscillator and the imposed external force, denoted by , , ,M K C f  respectively. 

Before application of the algorithm, the necessary integration constants are calculated, as 

well as the maximum tolerance maxtol  and the maximum number of iterations until conver-

gence 
maxk . 

4 BENCHMARK PROBLEMS STUDIED 

4.1 Comparison of the different time integration schemes used 

In this section, 13 different time integration schemes presented in the Tables 1-4 are com-

pared through their application for solving a number of benchmark problems. The schemes 

compared are the average constant acceleration method [12], the linear acceleration method 

[12], the Fox-Goodwin formula [14], the backward acceleration method [13], the U0-V0-Opt, 

the U0-V0-CA, the U0-V0-DA, the U0-V1-Opt, the U0-V1-CA, the U0-V1-DA, the U1-V0-

Opt, the U1-V0-CA, and the U1-V0-DA algorithms. The last 9 integration schemes are pre-

sented in [1] and details about their notation can be seen in Tables 2-4. Two of the benchmark 

problems involve the time integration of the equation of motion of nonlinear SDOF dynamic 

systems which are unforced and undamped (no external excitation is applied to them and no 

damping forces exist during their oscillation respectively), and at the third benchmark prob-

lem a SDOF oscillator is harmonically excited by imposing an external force with a sinusoidal 

time history. The response of the SDOF spring in the last case is elastoplastic, with a linear 

elastic and a perfectly plastic branches, exhibiting an identical yield limit in both tension and 

compression. An efficient nonlinear time integration scheme should conserve total energy in 

the first two cases, since in the last case the energy is dissipated through hysteretic response of 

the oscillator spring (its force-displacement diagram forms a closed loop). Thus an appropri-

ate measure of the inaccuracy of the various time integration schemes employed can be the 

deviation of the total energy from its initial value: 

0

0




E E
e

E
(18) 

in which E and E0 are the current and initial total energy, respectively. 
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Three benchmark problems are solved with the various integration schemes developed in 

this study: the SDOF oscillator with hardening spring, the SDOF oscillator with softening 

spring and the elastoplastic oscillator. The two first of these examples were also studied in [18] 

for an assessment of the performance of various time integration schemes and in [19] for test-

ing the differential quadrature time integration scheme, which performed successfully. 

Initialize 
0 0,  n nu u u u

Find  0 0 0,K K u u ,  0 0 0,C C u u  and  0 0 0,p p u u  from (2)

Find  0 0 0u f p M   from (1) 

Set 0nK K , 
0nC C , 0np p , 

0nu u , 
0nu u , 

0nu u  

for 1: ( ) 1n length f   

Initialize iteration counter 1k  

Initialize convergence tolerance 
maxtol tol

Initial estimate of 1

1nu  at next time step ( 1n  ) and first iteration ( 1k  ), from (16) 

Update 1

1nu  and 1

1nu  according to (14) and (15) respectively. 

Find  1 1 1

1 1 1,  n n nK K u u ,  1 1 1

1 1 1,  n n nC C u u  and  1 1 1

1 1 1,  n n np p u u  from (2) 

while maxtol tol  &
maxk k  

Set 1
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

 k k
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
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
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1





k
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Find the residual 1 1 1

1 1 1

 

   k k
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  k k k
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Figure 1: Flowchart of the modified algorithm used in this study. 
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4.2 SDOF oscillator with hardening spring 

The first benchmark problem studied is the SDOF oscillator with hardening spring, for 

which the equation of motion is: 

 2

1 21 0  u S u S u (19) 

This type of oscillator represents the well-known unforced and undamped Duffing oscillator. 

The system is conservative and its total energy is constant and given by analytical integration 

of (19): 

2 2 4

1 1 2

1 1 1

2 2 4
  E u S u S S u (20) 

In this example S1=100, S2=10 and the initial conditions are 
0 1.5u  and 0 0u . The time 

step used is Δt=0.005 and the duration of the dynamic analysis is equal to 200 time steps. The 

inf  parameter is selected to be equal to unity for all integration algorithms used. Concerning 

the Newton-Raphson iterative procedure used, the maximum convergence tolerance and the 

maximum number of iterations are max 0.01tol   and max 200k   respectively. 

4.3 SDOF oscillator with softening spring 

The second benchmark problem studied is the unforced and undamped SDOF oscillator 

with softening spring, for which the nonlinear dynamic equation of motion is: 

 tanh 0 u S u (21) 

The system is conservative and its total energy is constant and given by analytical integration 

of (21): 

  21
ln cosh

2
 E u S u (22) 

In this example S=100 and the initial conditions are 0 4u  and 0 0u . The time step used is 

Δt=0.05 and the duration of the dynamic analysis is equal to 200 time steps. The inf  parame-

ter is selected to be equal to unity for all integration algorithms used. Concerning the Newton-

Raphson iterative procedure used, the maximum convergence tolerance and the maximum 

number of iterations are max 0.01tol   and max 200k   respectively. 

4.4 SDOF oscillator with elastoplastic spring 

The third benchmark problem studied is the harmonically forced SDOF oscillator with 

elastoplastic spring, for which the initial conditions are 0 0u  and 0 0u . The time step used 

is Δt=0.005 and the duration of the dynamic analysis is equal to 800 time steps. The inf  pa-

rameter is selected to be equal to unity for all integration algorithms used. Concerning the 

Newton-Raphson iterative procedure used, the maximum convergence tolerance and the max-

imum number of iterations are max 0.01tol   and max 200k   respectively. As regards the elas-

toplastic behavior of the spring, the yield limit is assumed equal to 100 for both tension and 

compression and the modulus of elasticity in the linear elastic range is assumed to be equal to 

50.
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5 TIME INTEGRATION RESULTS 

5.1 Phase portraits 

The time integration results are presented in terms of phase portraits, which provide an 

overview of the evolution of the total energy of the oscillator. In each phase portrait, the oscil-

lation begins from the rightmost border of each diagram, and rotates clockwise around the 

maxima and minima of the displacement and velocity, thus inscribing an ellipse. Maximum 

kinetic energy in each cycle occurs at the upper and lower extrema, whereas maximum poten-

tial occurs at the left and right extrema. If the total energy of the oscillator remains constant, 

the ellipse is supposed to have a single line along its thickness. In the cases studied here, the 

total energy decreases gradually as the oscillation proceeds, resulting in decreasing kinetic 

and potential energy maxima and minima (in terms of absolute values), thus leading to ellip-

ses of lower area being inscribed into the initial one. The main reason for the energy decrease 

is that the convergence of the Newton-Raphson iterations occurs within a specified tolerance, 

if the solution is not accepted when maximum number of iterations is reached, and this error 

accumulates along time steps, leading eventually in large errors in the final response. Excep-

tion is the elastoplastic oscillator, in which energy is supposed to be dissipated due to the fact 

that its force – displacement diagram forms a closed loop as will be shown in later sections. 

The energy dissipation in each cycle is equal to the area of this loop. 

In Figure 2, phase portraits of the response of the SDOF oscillator with hardening spring 

are shown with the 13 different integration methods mentioned above. It is noted that in the 

cases of the U0-V1-Opt, the U0-V1-CA and the U0-V1-DA algorithms, their integration pa-

rameters have been selected so that they actually correspond to the generalized a-method (de-

noted by CH-a in the appropriate subplot title and referred in [15]), the HHT-a method 

(denoted by HHT-a in the appropriate subplot title and referred in [16]) and the Wood-

Bossak-Zienkiewicz method (denoted by WBZ-a in the appropriate subplot title and referred 

in [17]) respectively. It is clearly seen that the optimal numerical dissipation and dispersion 

methods (…-Opt) preserve the total energy much better that their corresponding continuous 

acceleration (…-CA) and discontinuous acceleration (…-DA) methods. 

In Figure 3, phase portraits of the response of the SDOF oscillator with softening spring 

are shown with the 13 different integration methods. Observations analogous to those of Fig-

ure 2 can be made, since the optimal numerical dissipation and dispersion methods (…-Opt) 

lead to a much lower total energy decrease compared to the other methods. The decrease of 

total energy is more pronounced for all the time integrators except for the optimal ones, in the 

case of the softening spring, for which it has to be mentioned that the time step is 10 times 

higher than the one used for the hardening spring. 

Finally, in Figure 4 the corresponding phase portraits are shown for the elastoplastic SDOF 

system. It is observed that except for the optimal numerical dissipation and dispersion algo-

rithm with zero displacement and velocity overshooting (U0-V0-Opt), the phase portrait of 

which can be easily observable, all the other algorithms exhibit numerical instabilities. This is 

clear in the cases of U0-V1-Opt (CH-a) and U1-V0-Opt algorithms. Furthermore, apart from 

the three aforementioned algorithms, in all the other cases the solution is observed to be in 

error from the start of the dynamic analysis; as the displacement increases towards the posi-

tive direction, the velocity becomes negative and decreases. Taking into account the initial 

conditions of the elastoplastic oscillator, where the initial displacement and the initial velocity 

are both zero, this is not possible. Therefore, it is actually shown that the U0-V0-Opt algo-

rithm performs best, compared to the others. 
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Figure 2: Phase portraits of the hardening spring d2u/dt2+100u(1+10u2)=0, (u)0=1.5, (du/dt)0=0, Δt=0.005, 

t=200Δt, ρinf=1, tolmax=0.01, kmax=200. 
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Figure 3: Phase portraits of the softening spring d2u/dt2+100tanh(u)=0, (u)0=4, (du/dt)0=0, Δt=0.05, t=200Δt, 

ρinf=1, tolmax=0.01, kmax=200. 
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Figure 4: Phase portraits of the harmonically excited elastoplastic SDOF system, (u)0=0, (du/dt)0=0, Δt= 0.005, 

t= 800Δt, ρinf=1, tolmax=0.01, kmax=200. 
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5.2 Energy variation 

The energy variation for the various numerical integrators is shown in Figure 5 for the os-

cillator with the hardening spring, in Figure 6 for the oscillator with the softening spring and 

in Figure 7 for the oscillator with the elastoplastic spring. In each of these figures, the numeri-

cal integrators used are grouped into three categories, which are the optimal numerical dissi-

pation and dispersion methods (represented with the continuous bold line), the continuous 

acceleration and discontinuous acceleration methods (represented with the dashed bold line) 

and finally the family of Newmark methods and the Fox-Goodwin method (represented with 

the continuous thin lines). The integration constants and other parameters are the same with 

those used for the results shown in Figures 1 to 3 respectively. The ideal time integration 

scheme would conserve energy in the first two oscillators, namely the energy deviation shown 

in Figures 4 and 5 would be zero. Among the algorithms studied here, energy reduction is 

present to a higher or lower extent. The lowest energy deviation is observed for the optimal 

numerical dissipation and dispersion algorithms. For the last, the energy reduction is about 

one third of that observed for continuous/discontinuous acceleration algorithms and the other 

common integration methods, in the case of the SDOF system with hardening spring (Figure 

5). The reduced energy deviation for optimal numerical dissipation and dispersion algorithms 

is more pronounced in the case of the SDOF system with softening spring, where it is approx-

imately one fourth of that observed for the remaining integration algorithms, as seen in Figure 

6. In both Figures, the rate of decrease of total energy becomes maximum at the first few cy-

cles of dynamic response for all the time integrators used. 
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Figure 5: Total energy relative error of the SDOF oscillator with hardening spring d2u/dt2+100u(1+10u2)=0, 

(u)0=1.5, (du/dt)0=0, Δt=0.005, t=200Δt, ρinf=1, tolmax=0.01, kmax=200. 
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Figure 6: Total energy relative error of the SDOF oscillator with softening spring d2u/dt2+100tanh(u)=0, (u)0=4, 

(du/dt)0=0, Δt=0.05, t=200Δt, ρinf=1, tolmax=0.01, kmax=200. 

In the case of the elastoplastic SDOF system, instead of the relative energy error, the value 

of the energy decay is plotted in Figure 7, since this system is not supposed to be conservative 

and its total energy variation cannot be analytically calculated. It is seen that the energy decay 

for the U0-V0-Opt algorithm is initially zero and gradually increases, with periodic undula-

tions but with constant average slope. For the other two optimal numerical dissipation and 

dispersion methods (CH-a and U1-V0-Opt), there is a steep decrease of the energy decay from 

zero towards a large negative value, which means that at the initial time steps the spring does 

not dissipate energy as it should, but it increases the internal energy of the system, a fact that 

is clearly impossible. The same holds for the other algorithms used; this is a clear indication 

that these algorithms fail to simulate the dynamic response of the system, at least with the se-

lected time step, while the U0-V0-Opt algorithm can efficiently integrate the differential 

equation of motion with increased accuracy and stability. 

5.3 Number of iterations needed 

The robustness of the U0-V0-Opt algorithm can be also deduced by comparison of the iter-

ations needed by each time integration scheme to achieve convergence for the three types of 

oscillators used in this study. In Figure 8 the number of iterations for each of the 13 different 

time integration algorithms used in this study versus time is presented, for the SDOF system 

with the hardening spring. The corresponding results for the SDOF system with the softening 

spring and the SDOF system with the elastoplastic spring are presented in Figure 9 and Figure 

10 respectively. The maximum number of iterations is equal to max 200k  . The integration 

constants and other parameters are identical to those used for the results presented in Figures 

1-6 respectively for hardening, softening and elastoplastic SDOF systems. It is apparent that 

the optimal numerical dissipation and dispersion algorithms need an average of 10 iterations 

and a maximum of roughly 15 iterations to converge to the nonlinear solution at each time  

2854



George Papazafeiropoulos, Vagelis Plevris and Manolis Papadrakakis 

0 0.5 1 1.5 2 2.5 3 3.5 4

-8000

-6000

-4000

-2000

0

2000

4000

SDOF with elasto-plastic response

Time

E
n
er

g
y
 d

ec
ay

U0-V0-Opt

CH-a,U1-V0-Opt

Figure 7: Total energy error of the harmonically excited elastoplastic SDOF system, (u)0=0, (du/dt)0=0, Δt= 

0.005, t= 800Δt, ρinf=1, tolmax=0.01, kmax=200. 

step for the two first types of oscillators considered, whereas for the third type of oscillator 

only the U0-V0-Opt algorithm achieves convergence with a maximum of 20 iterations 

throughout the duration of the analysis. In contrast, the remaining algorithms are shown to 

reach the maximum iteration limit repetitively, at which time steps the solution is accepted 

without further check for equilibrium in terms of the dynamic equation of motion. This im-

plies that for those algorithms much more error is accumulated to the calculated dynamic re-

sponse of the oscillator, and consequently the numerical total energy decrease is higher. This 

error can be of course reduced by decreasing the time step; from another point of view this 

means that given an acceptable level of accuracy and stability, the U0-V0-Opt algorithm can 

be used with a larger time step than that used by the other integration algorithms, and there-

fore it is more numerically efficient, since it requires less computational effort for a given 

time span. 

5.4 Internal force vs displacement diagrams 

The computational energy loss during the dynamic analysis can be explained if the internal 

force – displacement diagram of the two types of oscillators studied here is plotted for the var-

ious time integration algorithms used. Such plots are shown in Figure 11 for the SDOF system 

with hardening spring, in Figure 12 for the SDOF system with softening spring and in Figure 

13 for the SDOF system with the elastoplastic spring. It is obvious that the energy loss occurs 

due to the fact that in the internal force – displacement graphs a loop is formed between load-

ing and unloading branches. The area inside the loop is equal to the amount of energy lost 

during an oscillation cycle. For the first and second oscillator types considered here, the loop 

is formed probably because of the numerical singularities existing at the maximum and mini-

mum displacements from the equilibrium position. At these points the equilibrium path is to-

tally reversed. On the other hand, the convergence tolerance and/or the maximum unsuccess 
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Figure 8: Number of iterations needed for the SDOF oscillator with hardening spring d2u/dt2+100u(1+10u2)=0, 

(u)0=1.5, (du/dt)0=0, Δt=0.005, t=200Δt, ρinf=1, tolmax=0.01, kmax=200. 
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Figure 9: Number of iterations needed for the SDOF oscillator with softening spring d2u/dt2+100tanh(u)=0, 

(u)0=4, (du/dt)0=0, Δt=0.05, t=200Δt, ρinf=1, tolmax=0.01, kmax=200. 

2857



George Papazafeiropoulos, Vagelis Plevris and Manolis Papadrakakis 

0 2 4
0

10

20
U0-V0-Opt

0 2 4
0

100

200
U0-V0-CA

0 2 4
0

100

200
U0-V0-DA

0 2 4
0

100

200
CH-a

0 2 4
0

100

200
HHT-a

0 2 4
0

100

200
WBZ-a

0 2 4
0

100

200
U1-V0-Opt

N
u

m
b

er
 o

f 
it

er
at

io
n

s

0 2 4
0

100

200
U1-V0-CA

0 2 4
0

100

200
U1-V0-DA

0 2 4
0

100

200
Newmark ACA

0 2 4
0

100

200
Newmark LA

0 2 4
0

100

200
Newmark BA

0 2 4
0

100

200
Fox-Goodwin

Time

Figure 10: Number of iterations needed for the harmonically excited elastoplastic SDOF system, (u)0=0, 

(du/dt)0=0, Δt= 0.005, t= 800Δt, ρinf=1, tolmax=0.01, kmax=200. 
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Figure 11: Internal force vs displacement curves for the hardening spring d2u/dt2+100u(1+10u2)=0, (u)0=1.5, 

(du/dt)0=0, Δt=0.005, t=200Δt, ρinf=1, tolmax=0.01, kmax=200. 
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Figure 12: Internal force vs displacement curves for the softening spring d2u/dt2+100tanh(u)=0, (u)0=4, 

(du/dt)0=0, Δt=0.05, t=200Δt, ρinf=1, tolmax=0.01, kmax=200. 
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Figure 13: Internal force vs displacement curves for the harmonically excited elastoplastic SDOF system, (u)0=0, 

(du/dt)0=0, Δt= 0.005, t= 800Δt, ρinf=1, tolmax=0.01, kmax=200.  
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ful iterations reached, lead to errors in the calculation of the tangent stiffness, which are re-

sponsible for the different slopes between loading and unloading branches. For the third oscil-

lator type the existence of the loop results from the elastoplastic behavior of the spring and is 

physically correct. 

In addition, the area inside the loops is minimum for the optimal numerical dissipation and 

dispersion algorithms, compared to the remaining ones for the two first types of oscillators. 

Apart from this, the loop areas are generally larger for the SDOF system with softening spring, 

which means that the algorithmic energy dissipation will be higher for this type of oscillator. 

This is mainly due to the higher initial total energy in the SDOF system with softening spring 

compared to that of the SDOF system with hardening spring, since the relative energy loss 

observed in Figures 4 and 5 is roughly the same for the two oscillators. 

The closed force – displacement loop for the elastoplastic behavior can be clearly seen in 

Figure 13 in the case of U0-V0-Opt algorithm. It is verified that the yield limit is equal to its 

assumed value for both tension and compression, and that the modulus of elasticity in the lin-

ear elastic range is equal to 50. Apparent instabilities exist for the remaining algorithms, 

which corroborate the superiority of U0-V0-Opt algorithm. 

6 CONCLUSIONS 

 The family of linear generalized single step single solve algorithms, of which most com-

mon time integration algorithms are special cases, can be extended to solve materially

nonlinear dynamic response via a Newton-Raphson iterative procedure.

 In the nonlinear regime, the extended generalized algorithms perform satisfactorily, with

acceptable accuracy and stability, in cases where the remaining common algorithms fail

to trace the dynamic response.

 The algorithm which has zero-order displacement overshooting behavior, zero-order ve-

locity overshooting behavior and optimal numerical dissipation and dispersion (U0-V0-

Opt) can deal with nonlinear elastic as well as nonlinear elastic-plastic response with a

relatively large time step.

 Time integration algorithms for which convergence or equilibrium is not ensured at time

steps can lead to large errors in the calculated response. The relative energy decrease for

conservative systems can be as much as 60% of its initial value.

 Algorithms that are unconditionally stable for linear problems, may lose their stability in

nonlinear dynamic simulations.

 Further research has to be made to investigate the relation between the stable time incre-

ment of generalized single step single solve algorithms applied in nonlinear problems and

various other input data.
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