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Abstract

This study is focused on the development of prediction models for the determination of the load
carrying capacity of reinforced concrete walls using Artificial Neural Networks (ANNs). A da-
tabase of 95 samples is used for the RC Wall, based on available experimental studies, includ-
ing various critical parameters, such as the length of web portion of the wall (Lw), thickness of
wall boundary member (bw), effective depth of wall (d), height of wall (H), shear span ratio
(av/d), vertical steel ratio (ρv), horizontal steel ratio (ρh), yield strength of vertical and horizon-
tal steel (fy), compressive strength of concrete (fc), and the ultimate load carrying capacity
(Vexp). Depending on the combination of the input parameters, 4 different ANN models are
trained by using a customized code in Matlab. Several error metrics have been used for the 
evaluation of the performance of the various ANN morels. The comparative study exhibited that 
the predictions of the ANN model are closer to the experimental values as compared to their 
counterpart physical models, i.e., the compressive force path (CFP) and the current design
codes, ACI and Eurocode 2.  
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1 INTRODUCTION

Extensive research work has been conducted on studying the behavior of the RCC shear 
walls during the recent years [1]. These walls provide higher strength and rigidity to the build-
ings, resist large horizontal seismic forces, and reduce lateral sway and damage to other struc-
tural members [2]. The shear walls of the building should be arranged symmetrically in plane 
to reduce the adverse effects of distortion of the building. They can be placed symmetrically 
along one or, optimally, both directions of the plane. When the shear walls are located on the 
outer periphery of the building, they are most effective as they can provide more torsional stiff-
ness to the building, increasing the building’s capacity in resisting twist [2]. 

Internal forces, such as axial loads, shear forces and bending moments are developed in RC 
shear walls when the building is subjected to loading. Based on the aspect ratio of the shear 
wall (shear span length divided by the height of the wall), shear walls are usually divided into 
thin (high-rise) and low (low-rise) ones [3]. A ductile failure mechanism overshadowed by 
bending deformation near the bottom of the wall is more likely in thin, high-rise walls. On the 
other hand, because of their geometry, low-rise walls often undergo a failure mechanism con-
trolled by shear. Figure 1 (a)-(d) shows some typical failure modes of a shear wall. 

Figure 1: Typical failure modes of a shear wall. 

ACI-318 [4] indicates that if the aspect ratio of the wall is greater than 3.0, the wall is con-
sidered thin (generally controlled by bending), while if its aspect ratio is less than 1.5, it is 
considered a low-rise wall or low wall (generally controlled by shear). If the aspect ratio of the 
walls is between 1.5 and 3.0, the resulting behavior will be affected by both shear and bending. 
According to Eurocode 2 (EC2) [5] relatively tall and well-designed shear walls (with aspect 
ratio greater than 3) generally exhibit ductile flexural failure because of their higher shear 
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strength. Figure 1 (a) shows the development of flexural failure, possibly due to concrete crush-
ing or longitudinal bars fracture in the plastic zone of the hinge. It has been observed that flex-
ural failure is uncommon in squat shear walls, especially the ones having aspect ratio less than 
one as shown in Figure 1 (b) to (d). When the horizontal shear reinforcement of the wall is 
insufficient resulting in the development of one or more diagonal cracks, diagonal stress failure 
is likely to occur, as shown in Figure 1 (b). When the wall has a sufficient horizontal shear 
reinforcement, a diagonal compression failure will occur, as illustrated in Figure 1 (c), where 
concrete collapses under oblique (diagonal) pressure and cracks are widely distributed. Com-
pared to rectangular section shear walls, walls with boundary elements (the end thicker part of 
the walls, as illustrated in Figure 1) have a greater chance of oblique compression failure be-
cause they can exhibit higher flexural strength, increasing the requirement for web shear [4]. 
Compression failure or diagonal failure can be reduced by providing sufficient horizontal shear 
reinforcement and limiting the nominal shear stresses. The occurrence of slip shear failure may 
be due to (i) large cracks produced at the base of the wall; and (ii) concrete crushing and buck-
ling of steel bars along the narrow band of the wall base, as shown in Figure 1 (d), after the 
bending steel is significantly deformed. 

The theory through which the loads are transferred within the RC wall, at the ultimate limit 
state (ULS), is based on “Truss Analogy” models in most current design codes [4, 5]. The rel-
evant equations of design codes, such as EC2 [5] and ACI [4] are essentially empirical in nature, 
usually based on data fitting processes. However, the results obtained from these design codes 
appear to be significantly different with respect to their experimental counterparts. One of the 
possible reasons for this is the different nature of the analysis formulas used in the available 
codes. The aim of the current study is to analyze the load carrying capacity of reinforced con-
crete walls using ANN, i.e. a non-conventional problem-solving technique and compare it with 
current design codes, i.e., conventional models. For this purpose, a database of 95 samples of 
RC Wall (WAL) under lateral loading is used, with detailed information collected from previ-
ous studies, including details of the critical parameters. Four different ANN models are exam-
ined, and their results are compared to each other based on several error metrics. The 
comparative study exhibited that the predictions of the ANN model are closer to the experi-
mental values as compared to their counterpart physical models, i.e.; compressive force path 
(CFP) [6] and also the current design codes (CDCs), i.e. ACI and EC2.  

2 RCC SHEAR WALL DATABASE

 For this work, a database was prepared consisting of 95 samples, including the details of the 
critical parameters, as described in Table 1, i.e. length of web portion of the wall (Lw), thickness 
of wall boundary member (bw), effective depth of wall (d), height of wall (H), shear span ratio 
(av/d), vertical steel ratio (ρv), horizontal steel ratio (ρh), yield strength of vertical and horizontal 
steel (fy), compressive strength of concrete (fc), and ultimate load carrying capacity (Vexp) for 
the RC Wall, as illustrated in Figure 2 and Table 1. In addition to the minimum and maximum 
values of these parameters, the mean, standard deviation and coefficient of variation is also 
reported in the table. Figure 3 shows the correlation value R [7, 8] of the critical parameters 
against the experimental value Vexp. 
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Figure 2: Plan and cross-section of RC shear wall used in the analysis. 

 
Description Unit Min Max Mean St.Dev COV
Length of web portion of the wall (Lw) mm 650 1700 961.68 302.33 0.31 
Thickness of wall boundary member (bw) mm 65 130 95.58 18.25 0.19 
Effective depth of wall (d) mm 520 1360 771.5 240.92 0.31 
Height of wall (H), mm 610 4570 1567.61 746.78 0.48 
Shear span ratio (av/d),  0.86 3.04 2.19 0.62 0.28 
Vertical steel ratio (ρv)=Avw/bw∙sv  0.35 3.33 2.98 1.57 1.02 
Horizontal steel ratio (ρh)=Ahw/bw∙sh MPa 0.11 1.57 0.62 0.32 0.52 
Yield strength of vertical and horiz. steel (fy) MPa 375 622 247 506.59 63.63 
Compressive strength of concrete (fc) MPa 20.1 53.8 33.69 7.05 0.21 
Ultimate load carrying capacity (Vexp) kN 65 980 280.69 221.53 0.79 

Table 1: Statistical properties of the database for RC Wall. 

 

Figure 3: Variation of correlation factor R with respect to the critical parameters of RC Shear Wall. 
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3 MODELLING OF ARTIFICIAL NEURAL NETWORKS (ANN)

Neural networks simulate the human and animal nervous systems and biological neural net-
works in the brain [9]. These networks are used to evaluate functions based on a large number 
of input data parameters. ANNs can learn, classify, summarize, and predict the values of vari-
ables because they can keep the information presented to them during the training process in 
their memory, and because of their adaptability. They are composed of several connected layers, 
each of which contains a complex interconnected neuron system. There is a link between every 
two neurons in continuous layers, with a specific weight. Then the prediction of the neuron is 
multiplied by these weights. In this latter process, the prediction of the neuron is passed through 
the link and added to the bias as shown in Figure 4 (a). The Multilayer Feedforward ANN 
(MLFNN) is considered to be suitable for handling these types of problems. MLFNN has an 
input layer, an output layer, and one or more hidden layers. In this study, we specifically use 
Back-Propagation Neural Networks (BPNNs) [10]. BPNN is a feedforward multi-layer network 
with a standard structure. That is, neurons are not interconnected within a layer, but are con-
nected to all neurons in the previous and subsequent layers. For this type of ANN, the output 
value is cross-validated with the target response to get the error value. During many training 
cycles to reduce error values, different techniques are used, changing the weight of each link 
[11, 12]. In this case, it can be said that the network has learned the function of a particular goal. 
As the name of the algorithm suggests, errors are propagated back from the output node to the 
input node. The architecture of the ANN is defined by the number of hidden layers and the 
number of neurons in each layer, as illustrated in Figure 4. 

(a) (b) 

Figure 4: (a) Mathematical function of neuron, and (b) Typical layout of back propagation Neural Network. 

As shown in Figure 4, BPNN is made up of numerous layers, each layer comprising a com-
plex system of interrelated ‘neurons’. There are certain weights and links between the neurons 
and the weights are multiplied by values generated by the neurons. Later on, the values created 
by the neuron are moved through the link and then biased as shown in Figure 4, where a single 
node (neuron) in a hidden layer is represented with one R-element input vector. Eq. (1) repre-
sents this summation as a predefined function as 

i ia f w p b (1) 

where, b is the bias value, a is the neuron output, pi are the input values and wi are the weight 
coefficients. The above equation can also be written in matrix form as 
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a f bwp  (2) 

Where w is a row vector (1× R) and p is a column vector (R×1), so that their matrix product, wp 
is a scalar. The values for the input process of the next layer of neurons is produced by the 
output of the activation function. The final value of the weight is obtained during the learning 
process based on the available data after a random initial weight is first assigned. The error 
generated through the process can be calculated by Eq. (3): 

21
2 i i

i
E w T O (3) 

where Ti are the target values (defined in the database) and Oi are the output values predicted 
by the ANN. The details of the critical parameters, i.e., length of web portion of the wall (Lw),
thickness of wall boundary member (bw), effective depth of wall (d), height of wall (H), shear 
span ratio (av/d), vertical steel ratio (ρv), horizontal steel ratio (ρh), yield strength of vertical and 
horizontal steel (fy), compressive strength of concrete (fc), and ultimate load carrying capacity 
(Vexp) for the RC Wall are presented in Table 1. The specific parameters used for the different 
ANN models are presented in Table 2. 

ANN Name Set of Input Parameters used Output Parameter
WAL-1 Lw, bw, d, ,H, av/d, ρv, ρh, fy, fc

Vexp
WAL-2 Lw, bw, H, av/d, fc, Mf/fcbwd2

WAL-3 bw/d, av/d, ρvfy/ρh, fc/fy
WAL-4 bw/d, av/d, Mf/fcbwd2, fc/fy

Table 2: The four ANNs used and the sets of the input parameters used for every case. 

ANNs works well on normalized input/output data. The problem of low learning rate could 
be solved using the process described in [11, 12]. In the current study, all the parameters related 
to RCC shear wall were normalized using the expression of Eq. (4). All parameters used are 
unitless. 

max max
X XX x X x
x x

(4) 

In the above formula, x is the actual value, X is the normalized value, Δx is the difference 
between the maximum and the minimum x values, xmax is the maximum value for variable x, 
Xmax is the new required maximum value for X, ΔX is the new required difference between the 
maximum and the minimum X values. 

In this study, we use Xmax=0.7 and ΔX=0.9 in order to obtain normalized values in the range 
of [0.1, 0.9]. To study the precision of the generated models, the proposed ANN models need 
to be calibrated with obtained experimental results. For the calibration of the ANN model, the 
multi-layer free forward back-propagation (MLFFBP) process is used along with testing results 
process as proposed by the authors [11-17]. 
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Vu Unit MIN MAX DIFF AVG SD COV
Vexp (target value) kN 83 977 894 269.83 176.43 0.65 
WAL-1 prediction kN 93 950 857 262.03 179.36 0.68 
WAL-2 prediction kN 96 978 882 267.45 173.14 0.65 
WAL-3 prediction kN 92 753 661 292.81 182.03 0.62 
WAL-4 prediction kN 109 817 708 291.38 177.84 0.61 

Table 3: Performance of the different ANN models for RC Wall. 

Figure 5: Performance of the various ANN models for the case of RCC Shear Wall. 

Table 3 presents the performance of the four different ANN models used for strength (target 
values) prediction. Minimum values, maximum values, their difference, average, median, 
standard deviation, and coefficient of variation have been presented for different models. The 
Pearson correlation coefficient R, mean square error MSE, and mean absolute error MAE are 
calculated using Eqs. (5), (6) and (7), respectively. In case the ANN outputs Oi match the tar-
gets Ti perfectly, then R will have a value of 1, while the MSE and MAE values will be zero 
[11, 12]. 

1
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In the above equations, Ti and Oi values have been established experimentally and by using 
ANN models, respectively. Here, n represents the number of data points, while T and O  rep-
resent the average values for the experimental and the predicted values, respectively. The values 
for MSE, MAE and R as obtained from different ANN models proposed for RC wall are pre-
sented in Figure 6. In this study, WAL-2 is the model corresponding to highest R value (98%) 
and lowest MSE (0.22‰) and MAE (2.05%) values, as shown in Figure 5. Figure 6 shows the 
predictions of the different ANN models in comparison to the experimental (target) values. 

Figure 6: Predictions of the four examined ANN models for RC wall. 

4 COMPARATIVE STUDY

This section discusses a comparative study between the proposed ANN model, the CFP 
method [6] the CDCs, i.e. the ACI and EC models [4, 5]. The corresponding results of the 
different methods vs the experimental values are presented in Figure 7. The results show that 
the ANN and CFP are closer to the EXP as compared to the CDCs. 

Figure 7: Comparative analysis of ANN predictions for RC wall with physical models. 
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Figure 8 presents the Gaussian distribution of the ratios, where the ANN (expressed as 
Vexp/VANN) exhibits the least standard deviation of 1.05.  

Figure 8: Normal distribution curves for the various prediction models. 

Figure 9 shows the overestimate and underestimate values for ULS, where a value of 1 for 
Vexp/Vpre signifies the best prediction. We see that 90% of the results of the non-conventional 
models i.e.; ANN and CFP lie in the accurate range (near 1) i.e. [0.755, 1.255], while the CDCs 
results, i.e. ACI and EC2, have more samples in the other ranges. The CDC models underesti-
mate the value of V, in comparison to the ANN models and the CFP method.  

Figure 9: Ratios of Vexp/Vpred for RC wall. 

5 CONCLUSIONS 

The research work illustrated the capability of the ANN modelling for RC wall with fixed 
support at the bottom under the lateral loading, while considering the critical parameters, i.e. 
length of web portion of the wall (Lw), thickness of wall boundary member (bw), effective depth 
of wall (d), height of wall (H), shear span ratio (av/d), vertical steel ratio (ρv), horizontal steel 
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ratio (ρh), yield strength of vertical and horizontal steel (fy), compressive strength of concrete
(fc), and ultimate load carrying capacity (Vexp) for the RC Wall. Four ANN models were exam-
ined, and the second model (WAL-2 ANN) showed the best performance in terms of the error 
metrics values (MSE, MAE and R values). The comparative study exhibited that the prediction 
of the non-conventional model, i.e., the ANN model is closer to the provided experimental 
values in comparison to the other physical models, i.e., CFP and CDCs. This result is in accord-
ance with the results of other researchers working on different databases. Unlike the conven-
tional methodology, soft computing techniques like ANN models have the capability to predict 
the response of the RC member with simple or complex geometry under different loading con-
ditions. Once the ANNs are trained on the provided database, they can provide an accurate 
prediction without pertaining to material behavior and the mechanism underlying structural re-
sponse of RC at ULS.  
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