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Abstract 

Stakeholders are increasingly interested in finding efficient methods for regularly surveying 
and reporting on the state of their building assets, focusing on accuracy, consistency, and ease 
of use. High-rise buildings can exhibit wall surface defects and flaws such as cracks and spalls, 
which can significantly affect the structures’ safety and appearance. Such problems need to be 
taken care of in a timely manner, before they become too hazardous or costly to fix. In this 
research work, images of several types of wall damage are classified into three main catego-
ries: (i) Undamaged; (ii) Cracked; and (iii) Miscellaneous. In total, 6000 images were used in 
the dataset, equally subdivided into the three categories. In machine learning, convolutional 
neural networks (CNNs) stand out as a form of neural network that excels at image classifica-
tion. A transfer learning approach was implemented to classify wall surface defect images using 
three pre-trained CNN models, namely ResNet-50, ResNet-101, and Inception V3. 70% of the 
data set was used for training purposes, and the remaining 30% was used for validation. Sev-
eral metrics including accuracy, precision, recall, and F1-score were computed for each model, 
in an attempt to find the best model for the damage classification task at hand. According to 
the results, Inception V3 demonstrated superior performance compared to the ResNet-50 and 
ResNet-101 models, achieving an overall accuracy of 87.1%. In contrast, ResNet-101 and Res-
Net-50 obtained overall accuracies of 85.3% and 78.3%, respectively. The suggested method-
ology offers several benefits and a clear potential for broader adoption in the future as it can 
significantly reduce the time and effort required for manual inspection and classification of 
defects, allowing for more efficient maintenance and repair processes. 
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1 INTRODUCTION 
High-rise building construction and maintenance must achieve a high level of surface quality 

for both esthetic and safety purposes. Architectural structure conditions can deteriorate over 
time due to the combined effects of aging, climate, and human activities [1]. If left without 
proper care, flaws like cracks and spalls can pose problems to the building’s occupants, reduce 
the structure’s strength, and significantly lower the asset’s worth. Hence, one of the main goals 
of routine building surveys is to identify defective areas that develop on the surface of a struc-
ture. With the increasing demand for safe and well-maintained buildings, stakeholders are in-
terested in finding efficient methods for regularly surveying and reporting on the current state 
of their building assets. Therefore, wall surface defect classification is crucial to building 
maintenance, as defects such as cracks and spalls can seriously affect a building’s safety and 
appearance. 

Artificial intelligence (AI) methods have various applications in civil and structural engi-
neering [2, 3], in several areas such as: Structural health monitoring [4], structural damage 
identification [5, 6], structural design optimization [7], structural modelling [8-10], predictive 
maintenance [11, 12], construction planning and management [13], risk assessment [14, 15], 
predicting strength and other structural characteristics [16-18], and energy efficiency [19], 
among others. AI methods have also been recently used in wall surface defect classification 
[20]. These methods usually involve the use of machine learning techniques, particularly Con-
volutional Neural Networks (CNNs), to analyze images of wall surfaces to identify and classify 
different types of defects. The benefits of using AI in wall surface defect classification include 
increased accuracy, speed, and efficiency. It can help to reduce errors caused by human judg-
ment, as well as minimize the time and resources required for manual inspection and classifi-
cation. 

This research work proposes a machine learning-based approach for classifying wall damage 
in high-rise structures. We use pre-trained CNN models, namely the well-known Inception-V3 
[21], ResNet-50 [22], and ResNet-101 [23] models, to classify images of wall damage into three 
main categories: (i) undamaged; (ii) cracked; and (iii) miscellaneous. The study relies on a 
carefully curated dataset consisting of 6000 high-quality images, equally divided into the three 
previously mentioned categories. To ensure optimal performance, we allocated 70% of the data 
for training purposes and 30% for validation. We evaluate the accuracy, precision, recall, and 
F1-score for each model, to determine the best model for damage classification of the wall 
conditions. The proposed approach can provide an efficient and cost-effective solution for 
building maintenance, enabling regular surveillance of facilities to easily identify defects before 
they become too hazardous or costly to fix. 

2 LITERATURE REVIEW 
Hoang et al. [24] developed a technique for regularly analyzing the state of wall construc-

tions using image processing. Digital pictures were extracted using steerable filters and projec-
tion integrals based on image processing methods. Utilizing least squares support vector 
machine and support vector machine, the newly developed model extended the sorting bound-
aries that classify wall conditions into five categories: (i) longitudinal crack; (ii) oblique crack; 
(iii) diagonal crack; (iv) spall damage; and (v) unbroken wall. As training data for training and 
assessing the machine learning-based classifiers, 500 image samples were collected. Qayyum 
et al. [25] examined seven pre-trained neural networks, GoogLeNet, ResNet-50, ShuffleNet, 
ResNet-18, MobileNet V2, ResNet-101, and Inception V3, for crack recognition and sorting. 
Images were categorized as uncracked (UC); horizontal crack (HC); diagonal crack (DC); or 
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vertical crack (VC). With DC, HC, UC, and VC classification accuracies reaching 96%, 94%, 
92%, and 96%, respectively, the performance of Inception-V3 surpassed all other models. 

Dung and Anh [26] employed three pre-trained CNN models, namely ResNet, InceptionV3, 
and VGG16. Classifying the images into crack and uncracked categories required the analysis 
of 40,000 photos. At the same time, 500 photos were employed for image segmentation. When 
compared to InceptionV3 and ResNet, the VGG16 model performed better. Wang et al. [27] 
deployed three AlexNet models to identify concrete fractures, compared them to ChaNet, and 
found ChaNet to be more accurate, with an accuracy of 87.91%. Chaiyasarn et al. [28] com-
bined CNN and Support Vector Machine (SVM) to extract fracture characteristics from RGB 
digital images. They employed the SVM as a substitute for the SoftMax layer to improve sorting 
abilities and achieved an approximate 86% accuracy rate. The performance of pre-trained CNN 
models for classification depends on the number of images used to train the models [29]. 

Using deep learning models such as GoogLeNet, Inception-V3, and MobileNet-V2, Qayyum 
et al. [30] categorized photos of uncracked and cracked concrete and determined the orientation 
of the cracks (diagonal, horizontal, or vertical). Inception-V3 beat the other two models, attain-
ing 97.2% accuracy for discriminating between cracked and uncracked images and accuracies 
of 92.0%, 95.0%, and 96.0% for recognizing diagonal, horizontal, and vertical cracks, respec-
tively. Ahmed et al. [31] used the ResNet-50 model to identify pavement cracks with an accu-
racy and precision of 99.8% and 100%, respectively. Machine learning was utilized by 
Mangalathu et al. [32] to identify earthquake-related building damage. They used data from the 
magnitude 6.0 South Napa earthquake that struck near the city of Napa, California, in the USA 
in 2014, together with four machine-learning techniques to categorize damages in buildings 
based on the ATC-20 identifier. The models used various building-specific parameters as pre-
dictor variables and achieved a 66% prediction accuracy using the Random Forest (RF) method. 

Efflorescence is a white or grayish, powdery deposit that appears on the surface of masonry, 
concrete, or other building materials when they are exposed to moisture. It is caused by the 
migration of salt-bearing water to the surface of the material, where it evaporates, leaving be-
hind the salt crystals. On the other hand, spalling refers to the process of the surface of a struc-
ture, such as brick or concrete, breaking off into small pieces or flakes. This occurs when water 
gets into the pores of the material and freezes, causing the material to expand and crack. Wang 
et al. [33] developed an automated damage detection method for identifying efflorescence and 
spalling in medieval masonry constructions using a Faster R-CNN model based on the Res-
Net101 framework. The method was validated on 33 examples, achieving a mean average pre-
cision (AP) of 0.950, and was further tested on simple masonry structures. An Internet Protocol 
(IP) camera damage recognition system and a smartphone-based system were also employed 
for real-time detection purposes. The proposed method was reliable and efficient for managing 
and conserving historic buildings. 

3 OVERVIEW OF THE METHODOLOGY 
The first step of the process was to collect images of different wall damage scenarios. These 

images were captured from real buildings in the Taxila region of Pakistan. The second step 
involves manually dividing the dataset into three categories: (i) undamaged; (ii) cracked; and 
(iii) miscellaneous. The miscellaneous category includes all other damage cases besides the 
undamaged and cracked states i.e., efflorescence, spalling, and scaling of the surfaces. The third 
step involves further training the three pre-trained CNN models. Finally, the performance of 
the trained models is validated and matched in the last step. Figure 1 shows a flowchart of the 
steps of the adopted methodology. 
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Figure 1. The steps of the research methodology. 

The image dataset consisted of 6000 images in total, which were manually and equally di-
vided into the three categories (classes), by inspection. Each of the three categories had 2000 
images. Each class dataset was further divided into 70% used for model training and the rest 
(30%) was used for validation. Figure 2 shows one image from each category, for illustration 
purposes. 

 
 

 
(a) 

 
(b) 

 
(c) 

Figure 2. Sample images belonging to each category: (a) Undamaged, (b) Cracked, (c) Miscellaneous. 

3.1 Pre-trained Models 
Three models were used to classify images, namely ResNet-50 [22], ResNet-101 [23], and 

Inception-V3 [21]. ResNet-50 is a deep CNN architecture used for image recognition and clas-
sification tasks. It is a variant of the Residual Network (ResNet) architecture, which was intro-
duced in 2015 and won the ImageNet challenge that year. The ResNet-50 architecture consists 
of 50 layers, including convolutional layers, pooling layers, and fully connected layers. It uti-
lizes residual connections, which allow information to bypass a few layers of the network and 
be passed directly to later layers. This helps to address the problem of vanishing gradients, 
where the gradients used to update the weights of earlier layers become very small, making it 
difficult to train deep networks. The residual connections in ResNet-50 also enable the network 
to learn more complex features and patterns by allowing the flow of information to be more 
efficient and reducing the likelihood of overfitting. Figure 3 shows the architecture of ResNet-
50. 
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Figure 3. The architecture of ResNet-50 [22]. 

 
ResNet-101 is another variant of the ResNet architecture, which can be considered as an 

extension of ResNet-50 and has 101 layers, making it a deeper and more complex network. 
Like ResNet-50, it consists of convolutional layers, pooling layers, and fully connected layers. 
However, it includes more layers, and each residual block in it includes three convolutional 
layers, compared to two in ResNet-50. The additional layers in ResNet-101 allow it to learn 
more complex and abstract features in images, leading to improved accuracy and performance 
compared to ResNet-50. However, being a deeper network makes it more challenging to train, 
and additional computational resources are required. Like ResNet-50, ResNet-101 is pretrained 
on the ImageNet dataset, which allows for faster and more accurate training on new tasks. The 
pretrained model can be fine-tuned on other datasets with similar image characteristics to im-
prove its performance on specific tasks. The architecture of ResNet-101is illustrated in Figure 
4. 

 
 

 
Figure 4. The architecture of ResNet-101 [34]. 

Inception-V3 is a CNN architecture used for image classification and recognition tasks. It 
was introduced in 2015 as an improvement over the original Inception network, also known as 
GoogLeNet. Inception-V3 consists of multiple layers, including convolutional layers, pooling 
layers, and fully connected layers. One of its key features is the use of Inception modules, which 
are designed to capture features at multiple scales and dimensions. InceptionV3 incorporates 
several advanced features, including factorized convolution, batch normalization, and improved 
auxiliary classifiers. It has achieved state-of-the-art performance on several image recognition 
tasks and benchmark datasets, including the ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC). It is widely used in computer vision applications, including object detection, 
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face recognition, and image segmentation. It has also been used in the development of image-
based medical diagnosis and disease classification systems. Figure 5 presents an illustration of 
the architecture of the Inception-V3 CNN. 

 

 
Figure 5. The architecture of Inception-V3 [21]. 

 

4 RESULTS AND DISCUSSION 
70% of the image dataset was used for training, while 30% was reserved for validating the 

trained models. Confusion matrices were generated for each model to evaluate their perfor-
mance. The performances of the ResNet-50, ResNet-101, and Inception V3 models are sum-
marized in Table 1, Table 2 and Table 3, respectively. 

 
Class Undamaged Cracked Miscellaneous 

Accuracy 84.11% 79.50% 92.94% 
Precision 0.77 0.71 0.85 
Recall 0.74 0.66 0.95 
F1 Score 0.76 0.68 0.9 

Table 1: Accuracy, precision, recall, and F1 score for the ResNet-50 model. 

Class Undamaged Cracked Miscellaneous 
Accuracy 86.00% 85.78% 98.78% 
Precision 0.75 0.85 0.96 
Recall 0.86 0.7 1 
F1 Score 0.8 0.77 0.98 

Table 2: Accuracy, precision, recall, and F1 score for the ResNet-101 model. 

Class Undamaged Cracked Miscellaneous 
Accuracy 87.17% 87.11% 99.94% 
Precision 0.76 0.88 1 
Recall 0.9 0.71 1 
F1 Score 0.82 0.79 1 

Table 3: Accuracy, precision, recall, and F1 score for the Inception V3 model. 
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In particular, the tables show the accuracy, precision, recall, and F1-score values for each 

model. F1-score is a measure of a classification model’s accuracy that takes into account both 
precision and recall. Figure 6 depicts the confusion matrices for each of the three models. 
 

 
Figure 6. Confusion matrices for each model: (a) ResNet-50, (b) ResNet-101, (c) Inception V3. 

 
The results shown in the tables indicate that the Inception V3 model outperforms ResNet-50 

and ResNet-101 in the image classification task. Specifically, the overall accuracy of ResNet-
50, ResNet-101, and Inception V3 in classifying images into undamaged, cracked, and miscel-
laneous categories are 78.3%, 85.3%, and 87.1%, respectively. 

5 CONCLUSIONS AND FURTHER WORK 
Machine learning can be used in wall surface defect classification to automate the process 

of identifying and categorizing defects in wall surfaces. By using algorithms to analyze images 
of wall surfaces, machine learning models can identify patterns and classify defects based on 
their characteristics. This research work has demonstrated the effectiveness of using such tech-
niques and particularly CNNs for wall surface defect classification in high-rise structures. The 
transfer learning approach was implemented using three well-known pre-trained CNN models, 
namely ResNet-50, ResNet-101, and Inception-V3. The training database consisted of 6000 
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labeled digital images belonging to one of the three categories: undamaged, cracked or miscel-
laneous. The performance of each model was evaluated using well known metrics such as ac-
curacy, precision, recall, F1-score, and training time. Based on the results achieved for each 
model, it can be concluded that the Inception V3 model outperformed the ResNet-50 and Res-
Net-101 models, achieving an overall accuracy of 87.1%, which suggests that it was the best 
model for the task of damage classification of the wall.  

The suggested methodology for wall surface defect classification has practical implications 
for building maintenance, with several benefits. It can significantly reduce the time and effort 
required for manual inspection and classification of defects, allowing for more efficient mainte-
nance and repair processes. It also helps to improve accuracy and consistency in defect classi-
fication, reducing the risk of errors or oversights. Overall, the use of this machine learning 
technique can help to improve the safety, durability, and appearance of wall surfaces in high-
rise buildings and other structures. 

LIST OF ABBREVIATIONS 
The following table describes the meaning of various abbreviations and acronyms used 

throughout the paper. 
 

Abbreviation Definition 
AI Artificial Intelligence 
AP Average Precision 
ATC Applied Technology Council 
CNN Convolutional Neural Network 
DC Diagonal Crack 
HC Horizontal Crack 
ILSVRC ImageNet Large Scale Visual Recognition Challenge 
IP Internet Protocol 
ResNet Residual Network 
RF Random Forest 
RGB Red, Green, Blue 
SVM Support Vector Machine 
UC Uncracked 
VC Vertical Crack 

REFERENCES  
[1] Zhang, W., Z. Zhang, D. Qi, and Y. Liu, Automatic Crack Detection and Classification 

Method for Subway Tunnel Safety Monitoring. Sensors, 2014. 14(10): p. 19307-19328 
DOI: https://doi.org/10.3390/s141019307. 

[2] Lagaros, N.D. and V. Plevris, Artificial Intelligence (AI) Applied in Civil Engineering. 
Applied Sciences, 2022. 12(15) DOI: https://doi.org/10.3390/app12157595. 

[3] Lagaros, N.D. and V. Plevris, eds. Artificial Intelligence (AI) Applied in Civil 
Engineering. 2022, MDPI. 698. DOI https://doi.org/https://doi.org/10.3390/books978-
3-0365-5084-8. 

[4] Zafar, A., J. Mir, V. Plevris, and A. Ahmad, Machine Vision based Crack Detection for 
Structural Health Monitoring using Haralick Features, in 2nd Conference on 

2536



Waqas Qayyum, Rana Ehtisham, Vagelis Plevris, Junaid Mir and Afaq Ahmad 
 

Sustainability in Civil Engineering (CSCE’20). 2020: Capital University of Science & 
Technology, Islamabad, Pakistan. 

[5] Georgioudakis, M. and V. Plevris, A Combined Modal Correlation Criterion for 
Structural Damage Identification with Noisy Modal Data. Advances in Civil 
Engineering, 2018. 2018(3183067): p. 20 DOI: https://doi.org/10.1155/2018/3183067. 

[6] Avci, O., O. Abdeljaber, and S. Kiranyaz. Structural Damage Detection in Civil 
Engineering with Machine Learning: Current State of the Art. 2022. Cham: Springer 
International Publishing. DOI: https://doi.org/10.1007/978-3-030-75988-9_17. 

[7] Plevris, V., N.D. Lagaros, D.C. Charmpis, and M. Papadrakakis, Metamodel Assisted 
Techniques for Structural Optimization, in First South-East European Conference on 
Computational Mechanics (SEECCM 06). 2006: Kragujevac, Serbia. 

[8] Solorzano, G. and V. Plevris, Computational intelligence methods in simulation and 
modeling of structures: A state-of-the-art review using bibliometric maps. Frontiers in 
Built Environment, 2022. 8 DOI: https://doi.org/10.3389/fbuil.2022.1049616. 

[9] Solorzano, G. and V. Plevris, ANN-based surrogate model for predicting the lateral 
load capacity of RC shear walls, in 8th European Congress on Computational Methods 
in Applied Sciences and Engineering (ECCOMAS 2022). 2022: Oslo, Norway. DOI: 
https://doi.org/10.23967/eccomas.2022.050. 

[10] Solorzano, G. and V. Plevris, DNN-MLVEM: A Data-Driven Macromodel for RC Shear 
Walls Based on Deep Neural Networks. Mathematics, 2023. 11(10): p. 2347 DOI: 
https://doi.org/10.3390/math11102347. 

[11] Carvalho, T.P., et al., A systematic literature review of machine learning methods 
applied to predictive maintenance. Computers & Industrial Engineering, 2019. 137: p. 
106024 DOI: https://doi.org/10.1016/j.cie.2019.106024. 

[12] Susto, G.A., A. Schirru, S. Pampuri, S. McLoone, and A. Beghi, Machine Learning for 
Predictive Maintenance: A Multiple Classifier Approach. IEEE Transactions on 
Industrial Informatics, 2015. 11(3): p. 812-820 DOI: 
https://doi.org/10.1109/TII.2014.2349359. 

[13] Akinosho, T.D., et al., Deep learning in the construction industry: A review of present 
status and future innovations. Journal of Building Engineering, 2020. 32: p. 101827 
DOI: https://doi.org/10.1016/j.jobe.2020.101827. 

[14] Riedel, I., et al., Seismic vulnerability assessment of urban environments in moderate-
to-low seismic hazard regions using association rule learning and support vector 
machine methods. Natural Hazards, 2015. 76(2): p. 1111-1141 DOI: 
https://doi.org/10.1007/s11069-014-1538-0. 

[15] Munawar, H.S., S. Qayyum, F. Ullah, and S. Sepasgozar, Big Data and Its Applications 
in Smart Real Estate and the Disaster Management Life Cycle: A Systematic Analysis. 
Big Data and Cognitive Computing, 2020. 4(2): p. 4 DOI: 
https://doi.org/10.3390/bdcc4020004. 

[16] Waris, M.I., J. Mir, V. Plevris, and A. Ahmad, Predicting compressive strength of CRM 
samples using Image processing and ANN, in IOP Conference Series: Materials Science 
and Engineering. 2020, IOP Publishing. p. 012014. DOI: https://doi.org/10.1088/1757-
899x/899/1/012014. 

[17] Imran Waris, M., V. Plevris, J. Mir, N. Chairman, and A. Ahmad, An alternative 
approach for measuring the mechanical properties of hybrid concrete through image 
processing and machine learning. Construction and Building Materials, 2022. 
328(126899) DOI: https://doi.org/10.1016/j.conbuildmat.2022.126899. 

[18] Nikoo, M., G. Hafeez, G. Doudak, and V. Plevris, Predicting the Fundamental Period 
of Light-Frame Wooden Buildings by Employing Bat Algorithm-Based Artificial Neural 

2537



Waqas Qayyum, Rana Ehtisham, Vagelis Plevris, Junaid Mir and Afaq Ahmad 
 

Network, in Artificial Intelligence and Machine Learning Techniques for Civil 
Engineering, V. Plevris, A. Ahmad, and N.D. Lagaros, Editors. 2023, IGI Global: 
Hershey, PA, USA. p. 139-162. DOI https://doi.org/10.4018/978-1-6684-5643-9.ch006. 

[19] Seyedzadeh, S., F.P. Rahimian, I. Glesk, and M. Roper, Machine learning for estimation 
of building energy consumption and performance: a review. Visualization in 
Engineering, 2018. 6(1): p. 5 DOI: https://doi.org/10.1186/s40327-018-0064-7. 

[20] Valero, E., et al., Automated defect detection and classification in ashlar masonry walls 
using machine learning. Automation in Construction, 2019. 106: p. 102846 DOI: 
https://doi.org/10.1016/j.autcon.2019.102846. 

[21] Szegedy, C., V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the Inception 
Architecture for Computer Vision. in 2016 IEEE Conference on Computer Vision and 
Pattern Recognition (CVPR). 2016. DOI: https://doi.org/10.1109/CVPR.2016.308. 

[22] Mukherjee, S. The Annotated ResNet-50: Explaining how ResNet-50 works and why it 
is so popular. 2022; Available from: https://towardsdatascience.com/the-annotated-
resnet-50-a6c536034758 (Accessed April 1, 2023) 

[23] Zoph, B., V. Vasudevan, J. Shlens, and Q.V. Le, Learning Transferable Architectures 
for Scalable Image Recognition, in 2018 IEEE/CVF Conference on Computer Vision 
and Pattern Recognition (CVPR). 2018, IEEE Computer Society. p. 8697-8710. DOI: 
https://doi.org/10.1109/CVPR.2018.00907. 

[24] Hoang, N.-D., Image Processing-Based Recognition of Wall Defects Using Machine 
Learning Approaches and Steerable Filters. Computational Intelligence and 
Neuroscience, 2018. 2018: p. 7913952 DOI: https://doi.org/10.1155/2018/7913952. 

[25] Qayyum, W., et al., Assessment of Convolutional Neural Network Pre-Trained Models 
for Detection and Orientation of Cracks. Materials, 2023. 16(2): p. 826 DOI: 
https://doi.org/10.3390/ma16020826. 

[26] Dung, C.V. and L.D. Anh, Autonomous concrete crack detection using deep fully 
convolutional neural network. Automation in Construction, 2019. 99: p. 52-58 DOI: 
https://doi.org/10.1016/j.autcon.2018.11.028. 

[27] Wang, Z., G. Xu, Y. Ding, B. Wu, and G. Lu, A vision-based active learning 
convolutional neural network model for concrete surface crack detection. Advances in 
Structural Engineering, 2020. 23(13): p. 2952-2964 DOI: 
https://doi.org/10.1177/1369433220924792. 

[28] Chaiyasarn, K., et al., Crack Detection in Masonry Structures using Convolutional 
Neural Networks and Support Vector Machines, in Proceedings of the 35th 
International Symposium on Automation and Robotics in Construction (ISARC). 2018, 
International Association for Automation and Robotics in Construction (IAARC). p. 
118-125. DOI: https://doi.org/10.22260/ISARC2018/0016. 

[29] Qayyum, W., R. Ehtisham, C. Camp, J. Mir, and A. Ahmad, Detecting cracks with 
Convolution Neural Network (CNN) with Variable image dataset, in 2nd International 
Conference on Recent Advances in Civil Engineering and Disaster Management. 2022: 
Peshawar, Pakistan. 

[30] Qayyum, W., A. Ahmad, N. Chairman, and A. Aljuhni, Evaluation of GoogLenet, 
Mobilenetv2, and Inceptionv3, pre-trained convolutional neural networks for detection 
and classification of concrete crack images, in 1st International Conference on 
Advances in Civil and Environmental Engineering. 2022: University of Engineering & 
Technology Taxila, Taxila, Pakistan. 

[31] Ahmed, C.F., A. Cheema, W. Qayyum, E. Rana, and A. Ahmad, Detection of Pavement 
cracks of UET Taxila using pre-trained model Resnet50 of CNN, in 1st International 

2538



Waqas Qayyum, Rana Ehtisham, Vagelis Plevris, Junaid Mir and Afaq Ahmad 
 

Conference on Advances in Civil and Environmental Engineering. 2022: University of 
Engineering & Technology Taxila, Taxila, Pakistan. 

[32] Mangalathu, S., H. Sun, C.C. Nweke, Z. Yi, and H.V. Burton, Classifying earthquake 
damage to buildings using machine learning. Earthquake Spectra, 2020. 36(1): p. 183-
208 DOI: https://doi.org/10.1177/8755293019878137. 

[33] Wang, N., et al., Automatic damage detection of historic masonry buildings based on 
mobile deep learning. Automation in Construction, 2019. 103: p. 53-66 DOI: 
https://doi.org/10.1016/j.autcon.2019.03.003. 

[34] Chen, J., M. Zhou, D. Zhang, H. Huang, and F. Zhang, Quantification of water inflow 
in rock tunnel faces via convolutional neural network approach. Automation in 
Construction, 2021. 123: p. 103526 DOI: https://doi.org/10.1016/j.autcon.2020.103526. 

 

2539


